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ABSTRACT 

Genomic islands (GIs), including pathogenicity islands, are commonly defined as 

clusters of genes in prokaryotic genomes that have probable horizontal origins. These 

genetic elements have been associated with rapid adaptations in prokaryotes that are of 

medical, economical or environmental importance, such as pathogen virulence, antibiotic 

resistance, symbiotic interactions, and notable secondary metabolic capabilities. As the 

number of genomic sequences increases, the impact of GIs in prokaryotic evolution has 

become more apparent and detecting these regions using bioinformatics approaches 

has become an integral part of studying microbial evolution and function. In this 

dissertation, I describe a novel comparative genomics approach for identifying GIs, 

called IslandPick, and the application of this method to construct robust datasets that 

were used to test the accuracy of several previously published GI prediction programs. 

In addition, I will discuss the features of a new GI web resource, called IslandViewer, 

which integrates the most accurate GI predictors currently available. Further, the role of 

several GI and prophage regions and their involvement in virulence in an epidemic 

Pseudomonas aeruginosa strain that infects cystic fibrosis patients will be described; as 

well as an observation that recently discovered phage defence elements, CRISPRs, are 

over-represented within GIs.  
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CHAPTER 1 INTRODUCTION 

Portions of this chapter have been previously published in the book chapter 
“Mobile genetic elements and their prediction”, co-authored by M.G.I. Langille, F. 
Zhou, A. Fedynak, W.W.L. Hsiao, Y. Xu, and F.S.L. Brinkman In Y. Xu and J.P. 
Gogarten (eds.), “Computational Methods for Understanding Bacterial and 
Archaeal Genomes”, Series on Advances in Bioinformatics and Computational 
Biology, Vol. 7. Imperial College Press, London, 2008 ©2008 Imperial College 
Press 

1.1 Horizontal gene transfer 

Bacteria are the most abundant Domain of life that exists on earth (based 

on biomass) (Suttle, 2005). The species we see today are highly diverse, 

reflecting adaptations to a wide range of environments over billions of years. One 

of the major sources of adaptability for bacteria is the ability to obtain genes 

horizontally from other sources, including other prokaryotes, viruses, and even 

eukaryotes (Ochman, et al., 2000). Horizontal gene transfer (HGT) can occur by 

one of three major mechanisms: transformation, conjugation, and transduction.  

Transformation is the process by which bacteria uptake naked DNA from 

their environment (Griffiths, 1928). This transfer method has been shown to be 

naturally present across various taxa from both the Bacteria and Archaea 

Domains of life (Lorenz and Wackernagel, 1994). Any cell that is able to uptake 

naked DNA is considered “competent”. This competence state is often an 

inducible phenotype in response to an environmental stimulus, while some 

strains exhibit constant competence such as Neisseria gonorrhoeae and 

Haemophilus influenza (Dubnau, 1999). The process of transformation starts with 
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double stranded DNA binding to sites on the cell surface. The DNA is then 

translocated in single strand form into the cell by a series of proteins, many of 

which are related to the type IV pili and type II secretion systems (Chen and 

Dubnau, 2004). 

Conjugation is the process by which a donor cell physically joins with a 

recipient cell and passes DNA through a cell to cell bridge or mating pilus 

(Lederberg and Tatum, 1946). The DNA substrate that is passed by conjugation 

is typically a plasmid, but can also be a transposon (see section 1.2.3 below). 

Those elements that encode the conjugation machinery are referred to as self-

transmissible, while those that depend on externally encoded conjugation 

systems are called mobilizable. The process starts with the extension of the sex 

pilus from the donor cell to the recipient cell, which has recently been shown to 

occur at considerable distances (Babic, et al., 2008).  The substrate, typically 

single stranded DNA from a replicating rolling circle, is transferred by a type IV-

like secretion system into the recipient cell (Christie, 2001).   

Transduction is the movement of DNA by a virus that infects prokaryotic 

cells, known as a bacteriophage or simply phage. Phage can be divided to into 

two general groups depending on whether they possess the ability to become 

dormant, called temperate phage, or if upon infection of the host their only choice 

is to enter a lytic cycle (the production of phage progeny), called virulent phage 

(Lwoff, 1953). The dormant phage, upon invading the bacterial cell, will often 

integrate its own DNA into the bacterium’s genome becoming a prophage 

(Freifelder and Meselson, 1970) and will be replicated for numerous generations 
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along with the bacterial genome (see section 1.2.1 below). Induction provokes 

dormant prophage to enter a complete lytic cycle, and this may happen 

spontaneously or because of change in the bacteria’s environmental conditions. 

Prokaryotic DNA can be horizontally transferred by either generalized or 

specialized transduction. Generalized transduction occurs when random host 

DNA fragments mistakenly become packaged into the phage particle during the 

lytic cycle. Specialized transduction occurs when the host DNA flanking an 

integrated phage is replicated during phage induction and becomes integrated 

into the phage particle.  

1.2 Mobile genetic elements 

Mobile genetic elements (MGEs), such as transposons, integrons, 

prophage, insertion sequence (IS) elements, and genomic islands (GIs), are 

regions of DNA that are able to move themselves throughout the genome of a 

single organism or between organisms. These elements all share three common 

hurdles to their proliferation. First, the genetic element must be excised from the 

host genome into either an RNA or DNA molecule. Second, that element must be 

transmitted between organisms via HGT or within an organism and be ready for 

integration as a DNA molecule. Third, the element must then be integrated into a 

replicon in a new location. These elements form the basis of important 

mechanisms of evolution that result in the transfer, rearrangement or deletion of 

genes. In addition, many of these elements result in non-Darwinian evolution by 

allowing genes to be exchanged through HGT and question whether the “Tree of 

Life” would be better represented as a network (Doolittle and Bapteste, 2007). 
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1.2.1 Prophage 

A prophage is the latent form of a prokaryotic virus known as a phage and 

the movement of DNA between prokaryotic cells via a phage is referred to as 

transduction (see section 1.1 above). These integrated prophage account for a 

large portion of the variation seen between bacterial strains (Ohnishi, et al., 

2001) and can represent as much as 10-20% of the genes in a bacterial genome 

(Casjens, 2003; Casjens, et al., 2000). Furthermore, virulence factors that 

contribute to a bacterium’s pathogenicity, such as cholera toxin in Vibrio 

cholerae,  can be mobilized by phage and are seen as a key factor in the 

evolution of new pathogens (Boyd and Brussow, 2002). 

Prophage regions typically contain an integrase and several phage 

associated genes. However, they can often carry other genes that are not 

associated with the proliferation of the phage. Similarly to GIs (see below), the 

presence of a tRNA or a flanking direct repeat is supportive evidence that phage 

integration may have occurred in a region since these are often common 

integration sites for phage.  

1.2.2 Integrons 

Integrons are genetic elements that utilize site-specific recombination to 

capture and direct expression of exogenous open reading frames (ORFs). They 

were first identified in the late 1980’s for their important role in the capture and 

spread of antibiotic resistance genes (Stokes and Hall, 1989). Bacteria 

harbouring integrons possess the ability to incorporate and express genes with 

potentially adaptive functions, including antibiotic resistance genes, and therefore 
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pose a major problem for treatment of infectious diseases (Rowe-Magnus, et al., 

2002). Furthermore, some bacteria become resistant to multiple antibiotics by 

harbouring integrons that have captured multiple antibiotic resistance genes and, 

potentially, genes encoding other traits that give the bacteria an adaptive 

advantage. Additionally, integrons are often linked with other MGEs, such as 

plasmids and transposons, leading to rapid dissemination of such traits within a 

population. In 2007, it was estimated that approximately 10% of the partially or 

completely sequenced genomes in the Bacteria domain contained integrons 

(Boucher, et al., 2007), making them an important player in acquisition and 

spread of adaptive traits and antibiotic resistance in bacterial populations. 

Integrons consist of three key elements necessary for the capture and 

expression of exogenous ORFs: An integrase gene (intI) and recombination site 

(attI) are necessary for acquisition of genes, and a promoter (Pc) ensures their 

expression. IntI, attI and Pc comprise the 5’ conserved segment (5’CS), and the 

3’ conserved segment (3’CS) contains known genes that confer resistance to 

various compounds or provide additional metabolic function (Figure 1.1). IntI 

catalyzes the recombination between attI and a recombination site at the 3’ end 

of the gene called attC or the 59-base element (59-be). The 59-be consists of a 

variable region spanning 45-128 nucleotides in length flanked by imperfect 

inverted repeats at the ends designated R’ (GTTRRRY) and R’’ (RYYYAAC), 

where R is a purine and Y a pyrimidine. The recombination site in the 59-be 

recognized by intI is between the G and T bases of R’. An ORF and its 

associated 59-be is termed a gene cassette. These gene cassettes have been 
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shown to be excised as covalently closed circles that may contain more than one 

gene cassette linked together (Collis and Hall, 1992). 

All integrons characterized to date are classified as either integrons or 

superintegrons. Integrons are defined as gene cassettes associated with MGEs 

such as insertion sequences, transposons, and conjugative plasmids, which 

serve to disseminate genes through mechanisms of HGT. Five classes of 

integrons have been described, classified based on sequence homology of their 

integrase genes (Mazel, 2006). Class 1 integrons are the most clinically relevant, 

isolated frequently from patients with bacterial infections.  Bacteria with class 1 

integrons often confer multi-antibiotic resistance and possess gene cassettes 

resistant to a wide variety of antibiotics, including all known β-lactam antibiotics 

(Mazel, 2006). One such class 1 integron was identified in E. coli that contains 8 

different antibiotic resistance cassettes including a broad-spectrum β-lactamase 

gene of clinical importance (Naas, et al., 2001).  Association with MGEs can lead 

to rapid dissemination of integrons and their associated gene cassettes through 

both intraspecies and interspecies transfer. In support of this, extensive reports 

have identified integrons in diverse Gram-negative bacteria and in some Gram-

positives (Hall, et al., 1999; Mazel, 2006).  

Superintegrons differ from integrons in that they are chromosomally 

located and not linked to MGEs. They also differ in that their cassette arrays can 

be quite large; one unique superintegron identified in Vibrio cholerae harbours 

over 170 cassettes (Mazel, et al., 1998; Rowe-Magnus, et al., 1999). 
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In addition to antibiotic resistance genes, integron and superintegron gene 

cassettes have been shown to encode proteins involved in other adaptive 

functions, including virulence factors, metabolic genes, and restriction enzymes 

(Ogawa and Takeda, 1993; Rowe-Magnus, et al., 2001; Vaisvila, et al., 2001). 

However, a recent study reported that 78% of cassette-encoded genes are 

uncharacterized or have no known homologs to date (Boucher, et al., 2007).  

Figure 1.1  Schematic representation of a class 1 integron. 
IntI, integrase gene; attI , integration site; Pc, promoter for expression of 
integrated gene cassettes; 59-be (attC), site adjacent to ORF recognized by 
intI; sul, sulphonamide resistance; qacE, quaternary ammonium compound 
resistance; 59-be, 59 base element. Note that the circular cassette comes from 
excision of the integrated form (not shown). 
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1.2.3 Transposons and IS elements 

Barbara McClintock was the first to have observed recurring chromosomal 

breakages in the same region caused by a genetic element, Ds (Dissociation), in 

maize in early 1940s (McClintock, 1941). She later found another element, Ac 

(Activator), in maize that must be present for the Ds element to exert 

chromosomal breakage. These two elements were later proposed to be the 

autonomous (Ac) and non-autonomous (Ds) members of the same transposon 

family (Fedoroff, et al., 1983). More generally,  transposons are DNA elements 

having lengths ranging from a few hundred base pairs (bps) to more than 65,000 

bps, that proliferate in the host genome and have been observed in all three 

domains of life; bacteria, archaea and eukaryotes. 

Each group of transposons may consist of autonomous and non-

autonomous members. An autonomous transposon encodes transposition 

catalyzing enzymes, called transposases, and is able to transpose itself. A non-

autonomous transposon does not encode such proteins and relies on its 

autonomous counterparts with similar cis signals to transpose it. Movement of 

transposons is usually limited to within a single cell, but they are often contained 

within other MGEs such as GIs and prophages that allow for cell-to-cell transfer. 

Of course, as with any genomic region, transposons could also be transferred 

between naturally competent cells via transformation. In addition, some 

transposons called conjugative transposons can move via conjugation and I will 

discuss these at the end of this section.  
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Insertion Sequences (IS elements) are similar to autonomous DNA 

transposons, in that they encode a transposase, but unlike transposons they do 

not encode any genes contributing to the phenotype of the host and are typically 

much smaller than transposons (Adhya and Shapiro, 1969; Shapiro, 1969; 

Shapiro and Adhya, 1969). As of today, more than 1,500 IS elements have been 

identified and they are classified into 20 families, with some families being 

subdivided into groups, based on their genetic structures and the sequence 

similarities of the encoded transposases (Siguier, et al., 2006). Recent studies 

suggest that ~99 % of known IS elements in prokaryotes have fewer than 100 

copies in their host genomes (Siguier, et al., 2006). 

A transposon consists of one or more overlapping genes, one of which 

may be a transposase (Chandler and Mahillon, 2002; Mahillon and Chandler, 

1998; Siguier, et al., 2006), as shown in Figure 1.2. Additional genes may follow, 

which may alter the host phenotype such as antibiotic resistance genes (Stokes, 

et al., 2007). Most transposons carry a pair of terminal inverted repeats (TIRs) 

(shorter than 50 bps) at the two termini, and they are termed TIR transposons 

(Figure 1.2A) while a non-TIR transposon (Figure 1.2B) does not harbour such 

TIR signals at the termini. Linker sequences are located between each terminal 

signal and the ORF region. 

The relocation of transposons could be deleterious to the host as they 

may disrupt host genes by inserting into them and may alter the expression of 

the neighbouring genes with their endogenous promoters (Chandler and 

Mahillon, 2002; Mahillon and Chandler, 1998). Also, homologous recombination 
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between two transposons contributes to reorganization and deletion of 

chromosomal regions in the host genome (Toussaint and Merlin, 2002). After 

transposons were initially found many studies suggested that transposons were 

able to introduce beneficial mutations to the host genome through insertion and 

recombination (Blot, 1994). For example, several studies have shown that 

transposons can give a selective advantage to the host in specific environments 

by introducing novel gene mutants in E. coli (Lenski, 2004; Naas, et al., 1994; 

Zambrano, et al., 1993). By taking advantage of such mutagenesis capabilities, 

transposons have been extensively used in genetic engineering to mediate 

global insertional mutagenesis of bacteria (Berg, et al., 1984; Ely and Croft, 

1982; Rella, et al., 1985; Zink, et al., 1984).  
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Figure 1.2  Structures of two types of transposons in prokaryotes. 
 A) TIR (terminal inverted repeat) transposon and B) non-TIR transposon. Both of them have autonomous and non-
autonomous members. C) A transposon may also encode proteins other than a transposase. 

 

 

A B 
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Two adjacent IS elements, plus intervening DNA sequence, can form a 

composite transposon as shown in Figure 1.3, which may carry its own protein-

encoding genes within the linking DNA sequence, e.g. the antibiotic genes in Tn5 

(Berg, 1989; Reznikof, 2002)  and Tn10 (Haniford, 2002). Several more 

transposons with much more complex structures, e.g. Tn3 (Haniford, 2002) and 

Tn7 (Craig, 2002), have also been characterized in prokaryotes.  

Conjugative transposons (CTns) are MGEs that have features of 

transposons, plasmids and phage (Clewell and Flannagan, 1993; Scott and 

Churchward, 1995). As with transposons, conjugative transposons excise and 

integrate themselves into the genome and are traditionally named under the 

nomenclature of transposons, e.g. Tn916 (Franke and Clewell, 1981) and 

Tn1545 (Buu-Hoi and Horodniceanu, 1980; Courvalin and Carlier, 1987). 

However, conjugative transposons are similar to plasmids in that they have a 

covalently closed circular transfer intermediate that can be transferred by 

conjugation. This allows conjugative transposons to be integrated within the 

same cell or between organisms. Contrary to plasmids, conjugative transposons 

in their circular form cannot autonomously replicate and must become integrated 

into a prokaryotic genome to maintain their survival (Rice and Carias, 1994; 

Scott, et al., 1988). Some conjugative transposons have site-specific integration 

and have integrases that are highly similar to lambdoid phages (Poyart-

Salmeron, et al., 1989; Poyart-Salmeron, et al., 1990), but do not form viral 

particles and therefore are not transferred by transduction. 
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Figure 1.3  Structure of a composite transposons, Tn5.  
The Tn5 composite transposon contains two IS elements, IS50L and IS50R, 
both of which have terminal inverted repeats at their ends (denoted by 
triangles). The boxes between these IS elements represent genes that can be 
carried by the composite transposon and in some cases are antibiotic 
resistance genes. 

 

 

1.2.4 Genomic islands  

In 1990, researchers identified many virulence genes clustered together 

on the chromosome of several E. coli strains that were not present in others 

(Hacker, et al., 1990). These clusters of genes were thought to have been 

horizontally transferred and based on their association with or presence of 

virulence determinants were referred to as pathogenicity islands (PAIs). Later 

studies suggested that other types of islands, besides PAIs, could exist with 

genes related to other functions such as “secretion islands”, antimicrobial 

“resistance islands” and “metabolic islands” (Hacker, et al., 1997). GI was then 

used as a more general term that referred to any cluster of genes, typically 10-

200 kilobases in length, with horizontal origins (Hacker and Kaper, 2000). An 

increase in the use of the terms “pathogenicity islands” and “genomic islands” 

has continued since these terms were first used (Figure 1.4). This definition of 
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GIs is broad enough that other mobile genetic elements (MGEs) such as 

prophage, integrons, conjugative transposons, and integrative conjugative 

elements have overlapping classifications (Figure 1.5). Typically, many of these 

other MGEs may be classified as GIs, until further inspection of their mode of 

integration, site of integration, method of transfer, possible origins, and stability 

are determined; then a more specific definition can be applied. However, in many 

cases the transmission mechanism of these genetic elements is not obvious, due 

to mutations that have obfuscated or destroyed the transmission or integration 

mechanisms. Therefore, the use of GIs as a generic term is valuable for 

describing clusters of genes of putative horizontal origin that meet some or all of 

the criteria listed in Table 1.1, but without a clear mode of transfer or potential for 

transfer. In understanding this definition, it must therefore be appreciated that GI 

predictors are usually predicting such generalized regions, which may include 

chromosomally integrated MGEs such as prophages that have overlapping 

features. 
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Figure 1.4  Popularity of the terms “genomic islands” and “pathogenicity islands” in 
research paper abstracts archived in the PubMed database. 

 

 

The importance of GI prediction should not be underestimated. In this 

genomic era, where the number of completely sequenced bacteria genomes is 

increasing rapidly, the identification of GIs in newly sequenced genomes is 

becoming a common first step in gaining insight into causes of phenotypic 

differences between species or strains. Links between newly acquired GIs and 

pathogenic properties continue to be identified since pathogenicity islands were 

first identified in E. coli (Dobrindt, et al., 2004; Gal-Mor and Finlay, 2006; Hacker 

and Kaper, 2000). In addition, GIs have been found to encode iron uptake 

functions, type III secretion systems, toxins, and adhesins that augment a 

pathogen’s ability to survive and cause diseases in their host (Dobrindt, et al., 

2004; Gal-Mor and Finlay, 2006). Research within Dr. Fiona Brinkman’s lab, has 

additionally recently quantified that, among the genomes sequenced to date, 
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known virulence factors are over-represented within GIs (unpublished results). 

New studies emerging also indicate that selective loss/regain of islands may 

provide an additional means to modulate pathogenicity (Lawrence, 2005; 

Manson and Gilmore, 2006). Spontaneous excisions of PAIs have been 

observed in various pathogens resulting in distinct pathogenic phenotypes 

compared to wild type (Bueno, et al., 2004; Middendorf, et al., 2004). In the case 

of Salmonella enterica serovar Typhi pathogenicity island 7, called SPI7, deletion 

of this GI is associated with more rapid invasion in-vitro and reduced resistance 

to complement attack (Bueno, et al., 2004). As the genetic requirements for 

initiation of infection and long-term infection can be quite different, the capability 

to lose or alter certain genes, such as surface antigens, after the initial infection 

has been postulated as a means to establish long term colonization and avoid 

immune detection (Finlay and Falkow, 1997; Gogol, et al., 2007). In addition to 

this link to virulence, GIs appear to confer many other adaptations of interest to 

bacteria, including metal resistance, antimicrobial resistance, and secondary 

metabolic properties of environmental or industrial interest (Dobrindt, et al., 

2004). So, the targeted identification of such GI regions in prokaryotic genomes 

has become of increasing interest.  
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Figure 1.5  A general schematic of the class structure of MGE definitions.  
The fairly broad definition of GIs (large genomic regions with probable 
horizontal origins) allows several other MGEs to be grouped within GIs and 
illustrates how many GI prediction methods can be applied to other MGEs. 

 

 

GIs share several sequence and structural features that help to distinguish 

them from the rest of a given prokaryotic genome (Table 1.1, Figure 1.6).   

One of the most pronounced features is that their phyletic patterns differ 

from their host genome, resulting in GIs being sporadically distributed (i.e. only 

found in some isolates from a given species or strain). Even within a specific 

strain, there have been several reports showing that GIs are unstable and have 

the ability to sporadically excise (Hochhut, et al., 2001; Middendorf, et al., 2004). 

Sequence similarity tools such as BLAST (Altschul, et al., 1997) can be used to 

search for genomic regions that are present in one particular species/strain, while 
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being absent in several related species, as a relatively simplistic method for 

identifying GIs. In addition, whole genome sequence alignment tools such as 

Mauve (Darling, et al., 2004) can be used to observe conserved genomic regions 

(based on alignment of multiple related sequences) surrounding apparent newly 

inserted regions, providing some confidence that a particular region is likely a GI. 

Because of the different genome sequence compositions (such as G+C 

content) that different species lineages or bacteria may exhibit, GIs will often 

have a sequence composition that is significantly different from their new host 

genome. Sequence composition-based GI predictors heavily depend on this to 

identify islands. The simplest measure of sequence composition bias is G+C 

content (%G+C), but oligo-nucleotides of varying lengths (typically 2-9 

nucleotides) are being increasingly used (Karlin, 2001; Karlin, et al., 1998; 

Sandberg, et al., 2001; Tsirigos and Rigoutsos, 2005; Vernikos and Parkhill, 

2006). These measurements are often compared against the average 

composition of the entire genome and various methods utilize this feature to 

identify HGT and GIs. However, using only sequence composition bias to identify 

GIs has several well known flaws. First, highly expressed genes, such as those 

within ribosomal protein operons, often have a sequence composition that is 

significantly different from the rest of the genome (Karlin, 2001), resulting in false 

positive predictions of GIs. Second, any GIs that originated from species with a 

similar sequence composition as their current host bacterial genome will not be 

easily detectable. Third, mutational pressure acting on a foreign gene may cause 

it to adapt to the host genome signature over time in a process termed 



 

 19 

“amelioration” (Lawrence and Ochman, 1997), limiting the ability of sequence 

composition to detect more ancient GI insertions.  These problems with 

sequence composition–based methods for GI prediction can be augmented 

through the incorporation of other GI features into predictive methods. 

Table 1.1   List of features associated with genomic islands 

Feature associated 
with GIs 

Method(s) for detection Benefits and pitfalls when used 
for GI prediction 

-Sporadic distribution 
-Unstable and can 
excise spontaneously 

-Comparative genomics to 
identify unique, versus shared 
regions between genomes 

-Requires multiple closely related 
sequenced genomes for 
comparison 

-Sequence composition 
bias 

-Various tools have been 
developed to detect bias (see 
Table 1.2) 

- False positive predictions due to 
highly expressed genes 
- False negative predictions from 
gene amelioration 

-Adjacent to tRNA -Detect full or partial tRNAs 
using BLAST or tRNAscan-SE  

- Not all GIs are inserted within 
tRNAs 

-Usually relatively large 
(>8 kb) 

-Comparative genomics to 
identity large insertions or 
identifying features such as 
sequence composition bias 
over a large region 

-Large horizontally acquired 
regions are easier to predict over 
single HGTs 

-Certain classes of 
genes are over-
represented such as 
virulence factors, 
phage-related genes, 
and genes of unknown 
functions 

-Compare to functional 
databases such as COG 
(Clusters of Orthologous 
Groups)  
-Not commonly used in GI 
predictors. 

-May allow further sub-
classification of GIs into other 
MGEs such as prophage or 
integrated plasmids 

-Contain mobility genes 
or elements such as 
integrases, 
transposases, IS 
elements, etc. 

-Similarity search of mobility 
genes using Hidden Markov 
Models (HMMs) or BLAST  

- Can be used as supporting 
evidence for GI prediction. 
- Some GIs may not contain a 
mobility gene. 
-Annotation of mobility genes may 
not be available 

-Flanked by direct 
repeats (DRs) 

-Use repeat finders such as 
REPuter(Kurtz and 
Schleiermacher, 1999)  

- Not all GIs are flanked by DRs 
-Identification of relevant DRs can 
be difficult due to their size  
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Classically, elements associated with the insertion of some GIs such as 

tRNA genes and flanking direct repeats can be used as supporting evidence for a 

GI (Hacker, et al., 1997). tRNA genes are known phage integration sites and 

direct repeats are often a result of a phage being inserted into a tRNA (Reiter, et 

al., 1989; Williams, 2002). However, it has been shown that a significant 

proportion of GIs do not have flanking tRNAs and so using such features to 

identify GIs only identifies a small subset of them (Hsiao, et al., 2005; Vernikos 

and Parkhill, 2008).   

Certain types of protein coding genes are also associated with GIs. Many 

of these are related to the mobility of MGEs such as integrases and 

transposases. These “mobility genes” may indicate that a GI is autonomous or 

they could reflect remnants of other embedded MGEs such as IS elements that 

are frequently found in GIs (Hacker, et al., 1997). General functional classes of 

genes have also been shown to be over-represented within GIs, in particular cell 

surface proteins, host-interaction proteins, DNA-binding proteins, and (related to 

the mobility genes mentioned above) phage related proteins (Nakamura, et al., 

2004; Vernikos and Parkhill, 2008; Waack, et al., 2006). The most prevalent bias 

is that GIs disproportionately contain genes with no known homologs or with 

unknown function (Hsiao, et al., 2005).  This latter observation is thought to 

reflect the phage origin of many GIs and the fact that the gene pool predicted for 

phage is much larger than for bacteria (Hsiao, et al., 2005; Suttle, 2005).   

While it is not necessary for every feature to be present in a region that is 

named a GI, the simultaneous presence of a subset of these features is generally 
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viewed as strong evidence for the region’s horizontal origin. These regions are 

often thought to be a single HGT event, but many may be the result of several 

individual HGT events in the same genomic region. Recent studies have 

suggested that, apart from phylogeny-based methods, sequence composition 

bias, phage related genes, GI size, and integrase genes are the most important 

features for GI prediction, while flanking direct repeats, tRNAs, and gene density 

were informative but not as important (Vernikos and Parkhill, 2008). 

Figure 1.6  Graphical representation of several genomic features associated with GIs.  
A) Line plot representing nucleotide composition bias (e.g. %G+C or 
dinucleotide bias) that deviates significantly from the genome average (dotted 
line), B) presence of sequence elements (orange) such as mobility genes 
(transposases, integrases, etc.), IS elements, direct repeats (DR), and tRNAs, 
C) absence of large region in closely related isolates, strains, or species with 
conserved flanking genes (green) are all supporting indicators that a 
particular region is a GI. 
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1.3 Detection of genomic islands 

There are essentially two main bioinformatics approaches for identifying 

GIs: sequence composition-based and comparative genomics-based methods 

(Table 1.2).  

1.3.1 Sequenced composition based methods 

Sequence composition based approaches for detecting horizontally 

acquired genetic material have been shown to be a capable and versatile tool for 

detecting GIs, even considering the problems with false positives and false 

negatives alluded to above (i.e. missing ameliorated islands or identifying 

clusters of highly expressed genes as islands). Composition-based methods are 

desirable because they only require the single genome/sequence being 

analyzed, whereas comparative genomics-based approaches require that other 

similar genomes be available for comparison – and the latter is not always 

available. All of the methods described below essentially calculate the frequency 

of nucleotide sequences of a certain length, referred to as a k-mer, where k is the 

length of the sequence (usually from 1 to 9), for a sub-region of a genome and 

compare these results with the expected frequencies from that genome. 

Deviation from the genome frequencies is scored and if the score is above a 

certain cut-off, these regions are marked as putative GIs.  

1.3.1.1 SIGI-HMM 

SIGI-HMM uses codon usage (frequency of a tri-nucleotide normalized by 

synonymous codons) as a genome sequence composition signature (Merkl, 
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2004; Waack, et al., 2006). The codon usage frequency table of an organism is 

derived either from its whole genome, if available, or from its species’ entry in the 

CUTG codon usage database (Nakamura, et al., 1999). For each gene, the 

multiplicative-product of the codon usage frequency from each codon in the gene 

is determined using the organism’s own codon frequency table (the host table). 

The same multiplicative-product is also calculated using the same gene 

sequence but instead of using the organism’s own table, other organisms’ 

frequency tables are used (the donor tables). Lastly, a score in the form of a 

normalized odds-ratio is calculated from each pair-wise comparison between the 

product derived from the host table and that derived from a donor table. The 

score value can be used to decide whether the codon usage of a gene 

resembles more to the codon prevalence of the host species or to that of another 

(putative donor) species. In the cases where the sequence resembles another 

donor more, the gene, if it meets a custom cut-off, is marked as a putative foreign 

gene. Non-contiguous clusters of putative foreign genes are combined to form a 

putative GI using a Hidden Markov Model (HMM) (Eddy, 2004). The HMM 

incorporates an alternative probabilistic model based on randomly generated 

nucleotide sequences using the same amino acid sequence as the real gene 

product. This alternative model provides a baseline measure for the random 

noise in the sample. Moreover, an additional filter to remove potentially highly 

expressed genes was also incorporated into the HMM using the codon usage of 

ribosomal proteins as a reference. Using a path-generating algorithm of HMM, a 

final list of GIs is predicted. All genes assigned to a putative foreign state (i.e. 
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more similar to a donor frequency table) are considered in GIs and these regions 

are further combined if there are less than four native (not foreign) genes 

between them. 

1.3.1.2 IslandPath-DINUC and IslandPath-DIMOB 

IslandPath-DINUC and IslandPath-DIMOB were two methods that were 

used to construct datasets using dinucleotide bias, and dinucleotide bias plus the 

presence of at least a single mobility gene, respectively (Hsiao, et al., 2005).  

Mobility genes are identified, by searching the genome annotation for terms 

commonly used to describe mobility genes and by HMMER search of each 

predicted gene against PFAM mobility gene profiles. 

1.3.1.3 PAI-IDA 

PAI-IDA uses iterative discriminant analysis on three different genome 

signatures: %G+C, dinucleotide frequency, and codon usage(Tu and Ding, 

2003). Initial window size of 20kb and step size of 5kb were used to calculate the 

DNA signature of a window compared to the whole genome. A small list of known 

PAIs from seven genomes was used as the initial training data to generate the 

parameters used in the linear functions to discriminate anomaly regions from the 

rest of the genome. Then through iteration, the discriminant function is improved 

by considering additional (predicted) anomaly regions. The iteration ends if the 

status of each region stops changing.  
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1.3.1.4 Centroid 

Centroid allows the user to measure sequence composition using various 

options including k-mer size (1-8) and window size (Rajan, et al., 2007). The 

authors use a default k-mer size of five and found that by artificially inserting 

large genomic regions their method was more sensitive than %G+C and 

dinucleotide methods; especially at larger insert sizes of 20Kb and 40Kb.  

1.3.1.5 AlienHunter 

AlienHunter uses “Interpolated Variable Order Motifs” (IVOMs) which 

generates variable length k-mers and prefers longer k-mers over shorter k-mers 

as long as there is enough information (Vernikos and Parkhill, 2006). The length 

k is set from one to eight. The program assigns a weight to each k-mer based on 

its length in order to linearly combine all the k-mer frequencies as a score. The 

weights are necessary because shorter k-mers are more likely to appear than 

longer k-mers, but longer k-mers contain more information and are more specific. 

An HMM is used to refine the boundaries of the HGT regions. The advantage of 

this approach is in its ability to incorporate variable length k-mers, and based on 

the developer’s own analyses, longer k-mers provide better sensitivity and 

specificity than shorter k-mers alone (Vernikos and Parkhill, 2006). 

1.3.2 Comparative genomics methods 

Comparative genomics based approaches compare multiple genome 

sequences to detect GIs. While there are not always multiple genomes available 

for comparison, limiting the use of this method, comparative genomics-based 
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evidence of an island is preferred when possible. This preference over sequence 

composition-based methods is due to the problems, alluded to above, with false 

positive and false negative predictions. This comparative genomics-based 

approach will likely become more frequently used, as the number and diversity of 

genome sequences available increases.   

Table 1.2  GI prediction programs. 
Program 
Name 

Description Program Availability 

SIGI-HMM Measures codon usage and removes ribosomal 
regions 

Downloadable Graphical 
Program 

IslandPath-
DIMOB 

Measures dinucleotide bias and presence of at 
least one mobility gene 

Command line program 

PAI-IDA Measures GC, dinucleotide, and codon usage Command line program 

Centroid Allows various options, but 5-mers are the default Command line program 

Alien Hunter/ 
IVOM 

Uses variable length k-mers Command line program 

Mobilome 
FINDER 

Uses tRNA locations and whole genome 
alignments to identify GIs 

Web Resource 

 

The main premise of the comparative genomics approach is to identify 

clusters of genes in one genome that are not present in several closely related 

genomes (Figure 1.6). These regions can be often identified using whole genome 

alignment methods such as Mauve (Darling, et al., 2004) and Mummer (Delcher, 

et al., 2002). Genome regions that are aligned across multiple genomes are 

conserved regions that are unlikely to have horizontal origins (relative to each 

other), while regions that are unique to a genome (not aligned) can be 

considered putative GIs for the genome that they reside in. Any comparative 

genomics based method will rely heavily on the query genome and the available 



 

 27 

comparison genomes that are used in the analysis. For example, the inclusion of 

very distant genomes (with extensive rearrangements) in the comparison could 

make alignment of genomes difficult and lead to false positive predictions. Using 

at least one genome that has more recently diverged (i.e. large regions of 

conserved synteny) may result in more robust predictions of GIs, however, if the 

genomes are too closely related then GIs that have inserted before the 

divergence of the genomes will not be predicted. Again, a comparative genomics 

based approach depends on the availability of several related genomes being 

already sequenced, and for some genomes, there are no closely related 

genomes yet available to perform this comparison. However, with the rapid 

increase of sequenced genomes this limitation would continue to diminish and a 

comparative genomics approach would likely increase in utility.  

1.3.2.1 MobilomeFINDER 

When I started my thesis project in 2004 no comparative genomics based 

GI prediction method had yet to be published. However, since then one other 

method called MobilomeFINDER has been published (Ou, et al., 2007). 

MobilomeFINDER focuses on identifying those islands that are associated with 

tRNAs, a site that GIs often use as integration points. The method starts by 

identifying shared tRNAs among several related genomes and then uses Mauve 

to search for GIs within the up- and downstream regions of these orthologous 

tRNAs (Ou, et al., 2006). The extra requirement of having a tRNA nearby the 

predicted GI makes this method quite robust; however, not all GIs use tRNAs as 

insertion sites and so this results in many GIs being missed (Hsiao, et al., 2005). 
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In addition to this limitation, MobilomeFINDER requires the manual selection of 

both the query and the comparative genomes as input, which may result in 

inconsistent selection criteria due to the unfamiliarity of different phylogenetic 

distances within genera. 

1.3.3 Databases and other computational resources 

In addition to the GI prediction programs listed above, there are several 

other computational resources that can be useful in GI research (Table 1.3). 

1.3.3.1 IslandPath 

IslandPath provides a visual interface to aid researchers in the detection 

of GIs (Hsiao, et al., 2003). Each gene in the genome is represented as a small 

circle that has a colour assigned to it based on whether it has significant 

deviation from the G+C content of the genome. Genes that have unusual 

dinucleotide bias are also marked with a strikethrough. In addition, any mobility 

genes and tRNAs are marked with additional shapes. The result is a clickable 

whole genome graphical view that highlights features that associated with GIs 

and aids manual identification of putative GIs. 

1.3.3.2 MOSAIC 

MOSAIC is a database that contains pre-computed whole genome 

alignments for several bacteria species (Chiapello, et al., 2005). Users can 

browse and download conserved and “variable” regions for genomes within the 

database, with the variable regions being potentially GIs.  
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1.3.3.3 Islander 

Islander is a database of 84 GIs and their tRNA integration sites for 106 

genomes (Mantri and Williams, 2004). GI predictions were made by using tRNAs 

and tmRNAs predicted by tRNAscan-SE (Lowe and Eddy, 1997) and BRUCE 

(Laslett, et al., 2002) in a BLAST search and filtering out regions that do not 

contain an integrase genes. GIs can be browsed by GI name, organism name, or 

integration site (e.g. all GIs inserted in leucine tRNAs).  

1.3.3.4 PAIDB 

PAIDB is a database that provides GI information for those regions that 

are homologous to previously described pathogenicity islands (PAIs) (Yoon, et 

al., 2006). They call these regions PAI-like and any of these regions that also 

show sequence composition bias using %G+C are labelled as candidate PAIs 

(cPAIs). PAIs can be browsed by species, text searched, or searched with 

BLAST. 

1.3.3.5 VFDB 

VFDB (Virulence Factor Database) contains curated lists of virulence 

factors and pathogenicity islands for several species (Yang, et al., 2008). In 

addition, a larger number of virulence factor related genes are listed based on 

similarity to known virulence factors. These can be browsed by species, text 

searched, or searched with BLAST and PSI-BLAST. 
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Table 1.3  GI databases and other computational resources 
Resource 
Name 

Description Query and Download Options  

IslandPath Aids in GI detection by visualizating 
multiple features of GIs 
(dinucleotide bias, mobility genes, 
tRNAs, etc.) in a single genomic 
view. 

Whole genome graphical view is 
clickable and provides browsing of 
gene annotations 

MOSAIC Contains pre-computed whole 
genome alignments for several 
bacteria species 

Conserved and variable (potential 
GIs) can  be browsed and 
downloaded 

Islander Database of GIs within tRNA and 
tmRNA integration sites 

GIs can be browsed by organism, 
GI name, or integration site 

PAIDB Contains GIs (identified by %G+C 
bias) that are homologous to 
previously described PAIs 

Predictions can be browsed by 
species or by searching with text or 
BLAST 

VFDB Contains curated and putative 
(similarity based) virulence factors 
as well as a small list of curated 
PAIs  

BLAST and PSI-BLAST can be 
used to search for virulence factors. 
PAIs can be found using a text 
search or by browsing species 

 

1.4 Goal of present research 

At the onset of my project, there were approximately 200 completely 

sequenced prokaryotic genomes and no method that used comparative 

genomics to identify GIs had yet to be developed. In addition, several sequence 

composition based GI prediction methods had been published but, surprisingly, a 

thorough comparison of their accuracy had not been conducted. In addition, 

many of these methods were not user friendly or easily accessible by the 

researchers needing to use them for new genome sequencing projects. Lastly, 

several studies had previously shown that pathogenic strains of bacteria often 

contained GIs that were not present in their non-pathogenic relatives, but few 

studies had shown direct evidence that these GIs provided an in-vivo competitive 

advantage in the infected host organism.  
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To meet these goals, I created a new method for GI prediction, called 

IslandPick that used comparative genomics and used this tool to produce robust 

datasets of GIs and non-GIs (conserved regions). These datasets, that were 

independent of the sequence composition based approaches used by previous 

methods, were used to assess and compare the accuracy of several previously 

published GI prediction programs (Langille, et al., 2008).  After determining the 

most accurate GI predictors, I integrated the top three methods into a single 

integrated web resource, called IslandViewer, providing researchers with a user-

friendly and informative web site for predicting, viewing and downloading GIs 

(Langille and Brinkman, 2009). Developing these resources allowed me to 

identify several GIs and prophage regions within a newly sequenced epidemic 

strain in cystic fibrosis patients (Winstanley, et al., 2008). In collaboration with 

other researchers, several of these GIs were found to harbour genes that 

provided an in-vivo competitive advantage in an infection model. Lastly, the 

robust prediction of GIs across hundreds of genomes allowed for a newly 

identified association between GIs and recently discovered phage defence 

elements, CRISPRs. 
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CHAPTER 2 ISLANDPICK: A COMPARATIVE 
GENOMICS APPROACH FOR GENOMIC ISLAND 
IDENTIFICATION 

Portions of this chapter have been previously published in the article “Evaluation 
of genomic island predictors using a comparative genomics approach”, co-
authored by  M.G.I. Langille, W.W.L. Hsiao,  and F.S.L. Brinkman in BMC 
Bioinformatics, Volume 9 © 2008 Langille et al; licensee BioMed Central Ltd. 

2.1 Introduction 

An alternative approach that is independent from sequence composition-

based approaches for GI identification is to use comparative genomics to identify 

genomic regions that have a clear phyletic pattern of non-vertical inheritance. In 

these methods, putative GIs are often defined as clusters of genes in one 

genome that are not present in a related genome. They are based on the 

observation that GIs are sporadically distributed among closely related species or 

strains and can sometimes be found between very distantly related species as 

judged by the degrees of sequence divergence in 16S rRNAs or other orthologs 

(Ragan, 2001). Until recently, this approach could only be performed manually 

for a few species that had enough similar sequenced genomes (Beres, et al., 

2002; Hayashi, et al., 2001; Karaolis, et al., 1998; McClelland, et al., 2001; 

Parkhill, et al., 2001; Perna, et al., 2001).  

In this chapter, I describe the development of “IslandPick”, the first 

completely automated comparative genomics approach to identify GIs. Starting 

with all sequenced bacterial genomes as input (gathered using a new in-house 
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resource I developed called MicrobeDB), I use stringent but potentially flexible 

criteria, with distance cut-offs, to select query genomes that have a sufficient 

number of suitably related species or strains to conduct an analysis of GIs. 

IslandPick is then used to identify robust datasets of GIs from several genomes 

for the primary purpose of creating a benchmark that can be used for evaluating 

previously published sequence composition based GI prediction methods. As 

additional genome sequences become available, IslandPick will become 

increasingly useful for GI prediction and can be applied to those genomes to 

expand the benchmark dataset in a consistent and automated fashion.  

2.2 MicrobeDB 

A new in-house database that stores all completely sequenced genomes 

from National Center for Biotechnology Information (NCBI) and an application 

programming interface (API) for access to this data, called MicrobeDB, was 

constructed to aid in the analysis of large scale bacterial genomic studies. All 

sequenced genomes are downloaded monthly from the NCBI FTP server 

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria) and stored locally. Information at the 

genome project, replicon (chromosome or plasmid), and gene level are parsed 

from these files and stored in a MySQL database (see database schema in 

Appendix File 2.1). Each monthly download is given a new version number so 

that experiments can be conducted on a stable “snap-shot” of the currently 

available genomes and annotations at a given time. Information within the 

database can be accessed directly by MySQL queries, or through a novel Perl 

API that allows easier access to all of the data. 

ftp://ftp.ncbi.nih.gov/genomes/Bacteria
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Additional tables have been added to store GI predictions from multiple 

methods in a single resource. MicrobeDB is constructed so that additional 

analyses on microbial genomes such as ortholog prediction, protein subcellular 

prediction, etc. can be easily incorporated. 

2.3 Identifying genomic islands using a comparative genomics 
approach 

The overall approach that is used to predict GIs in IslandPick is to identify 

those regions that are present in only one genome (called the “query genome”) 

and are absent in several other related genomes (called “comparison genomes”). 

These unique regions are presumed to have been horizontally transferred (see 

section 2.7, for alternative theories), and are considered putative GIs. To identify 

these unique regions, whole genome alignments were constructed using the 

command line program mauveAligner from the Mauve 1.2.3 software package 

(Figure 2.1) (Darling, et al., 2004). Mauve allows for genomic insertions, 

deletions, inversions, and rearrangements and has been used by several 

researchers for prokaryote genome alignment (Glasner, et al., 2008; Glasner, et 

al., 2006; Greene, et al., 2007).  After the comparison genomes are selected (see 

next section), the query genome is aligned pair wise against each of the 

comparison genomes in the dataset. Although Mauve can create a single 

multiple genome alignment for all genomes, pair wise alignments were used 

instead. This is due to a limitation in Mauve 1.2.3 that would not allow alignment 

of regions from a subset of genomes. In addition, this allowed the pair-wise 

alignments to be parallelized on the Brinkman computer cluster resulting in a 
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faster implementation. For each pair wise alignment, regions longer than 8000 

nucleotides were extracted from the query genome that could not be aligned. 

Regions of the query genome that were not aligned in any of the pair wise 

genome alignments were retained for additional filtering as described below.  

One caveat of Mauve is that it enforces a one-to-one alignment so if a 

duplication event occurs in one of the input genomes only one of the copies will 

be aligned. These possible genome duplications were excluded and ensured that 

the putative genomics islands were truly unique to only the query genome, with 

respect to the comparison genomes, by using BLAST similarity search as an 

additional filter. Each “unique” region was searched against the query genome 

and all comparison genomes using BLASTn (Altschul, et al., 1997), with default 

parameters except for an e-value of 1 (instead of 10). All similarity search 

matches (hits) less than 700 nucleotides were discarded while remaining hits 

were clustered together if they were less than 200 base pairs a part. Any unique 

regions that contained clustered hits that covered more than half of the minimum 

island size (8kb) were removed and the remaining regions were considered 

putative GIs. This additional BLAST filter may limit the prediction of GIs that 

contain genes with homologs in other regions of the genome, but the filter is 

needed to increase the precision of GI predictions in IslandPick.  

2.4 Automated selection of comparison genomes 

The application of my GI prediction method (see previous section), 

depends heavily on the genomes that are selected for comparison. In the past, 

when the number of sequenced genomes was limited, the selection of 
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comparison genomes was usually based on the genomes that were available at 

that time. In addition, most analyses were often conducted on a set of species 

that a particular researcher was extremely familiar with.  Currently, due to the 

rapid increase of fully sequenced genomes, there are often numerous choices for 

comparison genomes. In addition, experiments that require analysis of hundreds 

of genomes makes manual selection not only time consuming but also increase 

the chance of bias resulting from personal choices. My goal was to produce a 

method that could “pick” comparison genomes automatically, in a uniform 

manner, with as little bias as possible. This would allow IslandPick to make 

predictions for any genome (if enough suitable genomes existed) without human 

intervention (Figure 2.1).  
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Figure 2.1  Pipeline of the IslandPick prediction program.  
Comparison genomes are automatically selected for the given query genome 
using a pre-computed genome distance matrix calculated with CVTree.  If 
enough suitable comparison genomes exist, GIs are predicted by taking each 
query genome and aligning it pair-wise with each comparison genome. Then 
all unaligned overlapping regions found in the query genome from the pair 
wise alignments are filtered using BLAST to ensure that they are truly unique 
to the query genome. 

 

2.4.1  Calculating genome distances 

I used an external application called CVTree, which infers evolutionary 

relatedness based on oligo-peptide content of complete predicted proteomes, to 

establish relative-phylogenetic distances between organisms. The input for 

CVTree is the translated protein sequence files for each genome. The algorithm 

then finds matching protein sequences of length 5 between the genomes, 

removes background noise using a Markov model, and finds the cosine between 

each genome composition vector (205). The resulting distance measure output 

by CVTree ranges from 0 (identical) to 0.5 (no similarity). The source code for 
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CVTree (Qi, et al., 2004) was obtained and used to calculate the 270,480 

distances between every pair of the 736 currently available bacterial 

chromosomes; requiring approximately 526 hours (or ~7 seconds per calculation) 

of computation time (based on a single Intel Xeon 2.8 GHz machine) or ~4 hours 

on a 130 node cluster. The distances outputted by CVTree are on a scale and 

range between 0 and 0.5. To ensure that CVTree was behaving suitably, I 

compared these distance calculations to those produced by more conventional 

phylogenetic distance measures using PHYLIP 

(http://evolution.genetics.washington.edu/phylip.html), using carB and omp85 

genes as comparison sequences, as was previously used for phylogenetic 

analysis of species (Lawson, et al., 1996). Other approaches were tested to 

calculate evolutionary distances, such as SHOT (Korbel, et al., 2002), however 

CVTree was found to give the most consistent results across various genera 

including Pseudomonas (Figure 2.2). 

http://evolution.genetics.washington.edu/phylip.html
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Figure 2.2  A Pseudomonas species tree with overlaid CVTree distances.  
The species tree was constructed using the conserved genes carB and Omp85 using maximum parsimony. Boot strap 
values are shown on the inner nodes of the tree. The CVTree distances (shown on the leaves of the tree) are pair-wise 
distances to P. syringae B728a. This is only one example of several trees that were inspected to confirm that CVTree was 
calculating suitable species distances.  
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2.4.2  Genome selection parameters 

Several CVTree distance cut-offs were formulated to ensure that 

appropriate genomes were selected for comparison to the query genome (Figure 

2.1, Figure 2.3). These parameters were selected using known groups of strains 

that are within the proper distance for comparative genomics (e.g. Pseudomonas 

aeruginosa and Escherichia coli strains) (Figure 2.2). In addition, the alignments 

were inspected to ensure that the alignment results were not too sparse or too 

similar to gain any useful information. A “Maximum Distance Cutoff” of 0.42 was 

used to remove any genomes that were too distant from the query genome. It 

was observed that at such cutoff, often less than 5% of the genomes could be 

aligned. A “Minimum Distance Cutoff” of 0.1 was used to remove very closely 

related strains that would not provide any additional information and may have 

prevented the identification of some notable islands that were shared between 

such closely related strains (Figure 2.3A). In addition, by allowing for a larger 

span of insertion time, this parameter ensures that IslandPick is not limited to 

identifying only very recently inserted GIs. At least one comparison genome must 

have a distance less than 0.30 from the query genome to ensure that 

identification of GIs are all within a similar evolutionary time (Figure 2.3B). 

Decreasing this parameter would restrict GI identification to only recent 

insertions, while increasing it would allow prediction of more ancient insertions 

(see section 2.7 below for more details). In addition, to ensure that the stable 

backbone regions identified are ancient enough to be reliable (see section 2.6 

below), at least one comparison genome must have a distance greater than 0.34 
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from the query genome (Figure 2.3C). Lastly, it is required that there be at least 

three suitable comparison genomes for each query genome to be used for further 

analysis (Figure 2.3D).  

These entire set of cut-offs can be changed to permit prediction of GIs 

acquired from different time frames. For example, by increasing the "Minimum 

Distance Cutoff" and the "Single Close Genome Cutoff" the period of time that GI 

acquisitions are detected is changed by choosing more divergent genomes for 

the analysis. Overall, the parameters, in particular the default parameters, were 

selected to ensure high precision and confidence in the resulting predictions, so 

that they could be used to fairly evaluate the accuracy of several sequence 

composition based GI prediction tools (see Chapter 3).  The parameters were not 

changed to maximize the accuracy scores of any GI prediction tools that were 

evaluated; however, default parameters resulted in the highest apparent 

accuracy when GI datasets were compared with a curated, literature-based 

dataset (see section 3.3 below). 
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Figure 2.3  Effect of IslandPick comparison genome cut-offs on a sample genome tree.  
First, for each query genome any genomes that are too distant to the query 
genome or too closely related to each other are removed (dotted lines) A). 
Second, to ensure that the identified GIs were inserted from similar time 
frames and were not biased by the genomes that are currently available, at 
least one genome (bold line) must be close enough to the query genome B). 
Also, it is required that at least one genome is a certain distance away from 
the query genome (bold line) to ensure that the backbone sequences 
identified were not inserted recently C). Finally, there must be a minimum of 
three comparison genomes that have met all other criteria D). The comparison 
genomes that have passed all the cut-offs are used for comparison with the 
query genome. 

 

2.5 Genomic island predictions using IslandPick 

Of the 675 completely sequenced microbial genomes, 736 chromosomes 

were initially used as queries in the IslandPick pipeline (Figure 2.1). Three 

hundred and seventy seven of these did not have at least three related 

species/strains while many others did not meet the stringent criteria to do a 
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comparative analysis (see section 2.4.2 above). One hundred and seventy three 

chromosomes met the requirements for the prediction of GIs and a subset of 134 

chromosomes contained GIs while IslandPick did not detect GIs in the other 39 

chromosomes (see genome list in Appendix File 2.2). Many of these 39 genomes 

may contain GIs that are smaller than 8kb or have other cases of HGT that were 

not being targeted by IslandPick. The dataset was further reduced to 118 

chromosomes, because a negative dataset could not be predicted for 14 

chromosomes and the GI prediction tool SIGI-HMM gave errors on another two 

chromosomes (see section 2.6 and Chapter 3). In total, I identified 771 GIs, 

comprising 12.4Mb and ranging in size from 8-105kb, within 118 chromosomes 

from 117 different strains and 22 genera (see Appendix File 2.3). These putative 

GIs contained a total of 11,404 annotated genes with an average of 14.8 

genes/GI and 97.5 genes/strain (see Appendix File 2.4). 

2.6 Developing a negative dataset of GIs 

In order to evaluate the accuracy of several previously developed GI 

predictors (see Chapter 3), a dataset of genomic regions that were not likely to 

contain GIs was constructed (negative dataset). The IslandPick pipeline was 

adapted to identify large genomic regions that were conserved in several 

genomes. These regions are likely to form the stable backbone of the genomes 

and are unlikely to be acquired by HGT among the strains considered. A multiple 

genome alignment of each query genome and all comparison genomes 

previously selected (see section 2.4 above) was performed using Mauve with 

minimum backbone length and maximum gap size parameters set to 8000 and 
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300, respectively. The regions that were conserved across all genomes were 

extracted from Mauve’s backbone output file.  These conserved genomic regions 

were identified for the same 134 query genomes that were used for prediction of 

GIs. Conserved regions larger than 8000 base pairs could not be identified for 14 

of these chromosomes and so these were removed from both the positive and 

negative datasets. The resulting negative dataset was about 4 times larger than 

the IslandPick dataset of GIs, containing approximately 50.6 Mb over 3770 

separate genomic regions (see Appendix File 3.1). The size difference between 

the negative and positive datasets was expected since the proportion of HGT 

versus conserved backbone in a genome is normally much smaller (Daubin and 

Ochman, 2004; Vernikos, et al., 2007; Waack, et al., 2006). 

2.7 Discussion 

I have introduced and outlined, IslandPick, a novel automated method for 

predicting GIs using comparative genomics. To date, this is the first attempt at 

trying to automate genome selection for comparative genomics. I have used 

IslandPick, with its stringent default criteria, to generate datasets of GIs and non-

GI regions that can be used to evaluate the accuracy of multiple sequence 

composition based GI predictors (see Chapter 3).  

Of course, there are some limitations to predicting GIs using comparative 

genomics.  The choice of genomes for comparison to each query genome can 

result in differences in the predicted GIs. IslandPick’s genome selection criterion 

uses several distance cutoffs to minimize this bias as much as possible (example 

given in the next paragraph). GIs could be present in the negative dataset if a GI 
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inserted before the divergence of all genomes examined. To minimize these in 

my datasets, IslandPick requires that at least three comparison genomes be 

used for each query genome and that at least one comparison genome is at least 

some minimal distance away from the query genome. The number of false 

positive GI predictions is minimized by requiring that any putative GI is present 

only in the query genome when compared to all comparison genomes. 

Therefore, a deletion of the same genomic region would need to occur in three or 

more strains for it to be mis-predicted as a GI in my analysis. Similarly, a GI that 

inserted into multiple genomes would have to be conserved in all of the diverse 

genomes studied, to be improperly placed in the negative dataset.  Although 

using several rules in the genome selection process results in very stringent 

datasets of GI and non-GI regions, it does limit the number of organisms that can 

be used by IslandPick. Relaxing the genome selection process by the removal of 

some of these cut-offs would allow IslandPick to be applicable to more genomes. 

It should be emphasized that IslandPick was not developed to be a GI prediction 

tool that would replace sequence-based composition tools, which can be used on 

any genome without the requirement of having several other comparative 

genomes; rather, the IslandPick approach allows the testing of these tools and in 

certain cases can also be used for GI prediction (cases that should increase 

notably in the future, as more and more genomes are sequenced). 

As an example of the IslandPick approach, when Salmonella enterica 

Typhi CT18 is used as a query genome to identify islands using the default 

cutoffs, very closely related genomes including S. enterica Typhi Ty2 and S. 
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enterica Paratyphi A str. ATCC 9150 were excluded from comparison. Therefore, 

IslandPick identifies GIs that have inserted after the divergence of S. enterica 

Typhi CT18 and the next most related genome that has been sequenced, which 

is S. typhimurium LT2. Islands that inserted before the divergence of CT18 and 

LT2 would also not be included in the positive dataset, using these stringent 

cutoffs. However, IslandPick requires that at least one genome be a certain 

distance from the query genome (Shigella dysenteriae Sd197 in this example), 

so that these more ancient GIs are not improperly included in the negative 

dataset. It is assumed that any sequences shared between the query genome 

(e.g. Salmonella enterica Typhi CT18) and the comparative genomes including 

those that meet the single distant genome cutoff (e.g. S. dysenteriae Sd197) are 

sufficiently stable and can be considered as the conserved genome backbone. 

Again, distance cutoffs can be modified in IslandPick to detect islands that are 

more ancient or those acquired more recently. 

In many instances, IslandPick tends to split large islands into smaller 

ones, which is probably the result of a few similar genes being identified in one or 

more of the comparison genomes. Considering that as an island gets bigger 

there is a greater chance of detecting some similarity between the genomic 

regions being compared, one would expect that very large GIs might be split into 

smaller ones. As indicated in recent research, this limitation could be improved in 

the future by spanning together islands that are interrupted by only small regions 

of low similarity (Azad and Lawrence, 2007).  
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Similar to other GI prediction tools IslandPick does not try to identify the 

origins or the methods of horizontal transfer for these GIs. Indeed future research 

on many of these large regions of HGT will likely allow them to be sub-classified 

into known mobile elements such as conjugative transposons, integrated 

plasmids, integrons, and prophage; and will depend on robust prediction tools 

and knowledge of their strengths and weaknesses. Comparative genomics 

studies like this one, will aid in these areas by providing an independent method 

for GI prediction. As more genomes are sequenced, the distance cutoffs used in 

this method should be re-evaluated, but this overall approach should only 

increase in utility as the number of completely sequenced microbial genomes 

increases into the thousands.  
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CHAPTER 3 EVALUATING SEQUENCE COMPOSITION 
BASED GENOMIC ISLAND PREDICTION METHODS 

 
Portions of this chapter have been previously published in the article “Evaluation 
of genomic island predictors using a comparative genomics approach”, co-
authored by  M.G.I. Langille, W.W.L. Hsiao,  and F.S.L. Brinkman in BMC 
Bioinformatics, Volume 9 © 2008 Langille et al; licensee BioMed Central Ltd. 

3.1 Introduction 

Using the positive and negative datasets of GIs developed in Chapter 2, I 

evaluated how well these datasets agreed with those predicted using previously 

published sequence composition-based GI tools since IslandPick’s comparative 

genomics based method is independent of sequence composition-based 

methods. Analyses of GI/HGT prediction tools have been previously published, 

but have used either artificial datasets or real data from only a few species (Azad 

and Lawrence, 2007; Vernikos and Parkhill, 2006).  In addition, I evaluated how 

well these datasets agreed with GIs reported in a small literature-based dataset 

of GIs. The accuracy of these sequence composition based GI prediction 

methods are compared and suggestions for their use are discussed.  

3.2 Comparison with sequence composition based GI 
prediction methods 

The GIs and the non-GIs identified from my comparative genomics 

approach were used as positive and negative datasets, respectively, to evaluate 

the accuracy of several previously published sequence based GI prediction tools: 
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PAI_IDA (Tu and Ding, 2003), AlienHunter (Vernikos and Parkhill, 2006; Waack, 

et al., 2006), SIGI-HMM (as part of the Colombo package) (Waack, et al., 2006), 

Centroid (Rajan, et al., 2007), and IslandPath (included both DIMOB and DINUC 

methods) (Hsiao, et al., 2003; Hsiao, et al., 2005) (Table 3.1). The tools were run 

using their default parameters on the same 118 chromosomes and any 

overlapping regions with the negative dataset were considered false positives 

(FP) while overlapping regions with the positive dataset were considered true 

positives (TP) (see Appendix File 3.2). False negatives (FN) and true negatives 

(TN) were those regions in the positive dataset and negative dataset, 

respectively, which were not predicted by the method being evaluated. Precision 

or specificity was calculated using the standard formula TP/ (TP +FP) and recall 

or sensitivity was calculated using TP/ (TP+FN). The equation, (TP + TN)/ 

(TP+TN+FP+FN) was used to measure the overall accuracy (Figure 3.1). 

Figure 3.1  Accuracy calculations using IslandPick derived positive and negative 
datasets.   
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The following accuracy calculations were measured using the number of 

overlapping nucleotides (Appendix File 3.3); although results were not 

significantly different when counting only GIs with greater than 50% overlap (data 

not shown). I found that the precision and recall for the tools evaluated varied 

considerably (Table 3.1). SIGI-HMM performed the best with 92% precision 

(though only 33% recall) whereas AlienHunter had the best recall at 77% (though 

only 38% precision). SIGI-HMM and the IslandPath/DIMOB tool had comparable 

overall highest accuracy of 86% with IslandPath-DIMOB more suitable for 

analyses requiring a slightly higher recall (precision of 86% with a recall of 36%). 

All of the tools had similar overall accuracies ranging from 82-86% (but with 

differing emphasis on precision versus recall) except for AlienHunter, which had 

an accuracy of only 71%. This appeared to be primarily due to the large number 

of predictions being made by AlienHunter (1264.8 kb of GI/genome) versus the 

other methods (163.2 to 444.2 kb of GI/genome).  

For completeness, I also calculated the accuracy of each tool using every 

other tool as the benchmark (Appendix File 3.4). The average accuracy 

measurements over all benchmarks for each tool were very similar to those 

calculated using only my datasets, indicating that the datasets generated using 

IslandPick may be an appropriate reference dataset for future use. These 

positive and negative GI datasets, and the source code for development of these 

datasets, are available at www.pathogenomics.sfu.ca/islandpick_GI_datasets. 

http://www.pathogenomics.sfu.ca/islandpick_GI_datasets
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Table 3.1  Average number of GI predictions and accuracy measurements of several GI 
prediction tools. 

Tool 

Average 
number of 

nucleotides in 
GIs per genome 

(kb) 

Precision Recall Overall 
Accuracy 

SIGI-HMM 232.7 92.3 33.0 86.3 

IslandPath/ 
DIMOB 170.7 85.8 35.6 86.2 

PAI IDA 163.2 68.0 32.2 83.7 

Centroid 171.3 61.3 27.6 82.4 

IslandPath/ 
DINUC 444.4 54.8 53.3 82.2 

Alien 
Hunter 1264.8 38.0 77.0 70.8 

Literature 639.4 100 87.0 96.3 

3.3 Comparison with previously published genomic islands  

Although, there is no gold standard dataset of GIs, I wanted to examine 

how previously published GIs overlapped with my datasets. Five strains from the 

list of 118 had published GIs (Beres, et al., 2002; Hayashi, et al., 2001; 

McClelland, et al., 2001; Parkhill, et al., 2001; Perna, et al., 2001). As with the 

analysis of the sequence composition based GI predictors, I calculated the 

overlap of the published GIs against the positive and negative dataset. I found, 

potentially due in part to the similar manual comparative genomics methods 

sometimes used to identify GIs in the literature dataset, that the literature GIs had 

the most agreement with my datasets (versus the GI predictors evaluated below). 

Literature GIs had the highest precision, recall, and overall accuracy of 100, 
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87%, and 96%, respectively, when using IslandPick-predicted islands as the text 

dataset (Table 3.1).  

3.4 Comparison of sequence composition based approaches 
using additional GI datasets constructed with more relaxed 
criteria. 

IslandPick’s parameters can be modified to allow the prediction of GIs with 

more ancient origins. Although the inclusion of more ancient GIs could lead to a 

more comprehensive dataset, it may result in an increase in false positives since 

the proper identification of older evolutionary events can be easily mistaken. 

However, I did use two additional “relaxed” sets of parameters to determine the 

effect on GI prediction of changing the default parameters. These relaxed 

parameters should identify GIs with origins that are more ancient. The first 

relaxed set used the same default parameters, except that the "Minimum 

Distance Cutoff" was changed to 0.15 and the "Single Close Genome Cutoff" 

changed to 0.34. The second set of parameters was even more relaxed by 

increasing the “Single Close Genome Cutoff" to 0.20, with all other parameters 

being the same as the first relaxed set. 

 The first “relaxed” dataset had approximately 46% more GIs predicted per 

genome, while as expected the negative datasets stayed about the same size 

with a 3% increase in the relaxed dataset. Notably, accuracy relative to the 

literature dataset went down slightly (see Appendix File 3.5 and Appendix File 

3.6), indicating that the IslandPick defaults do most accurately reflect literature-

based GI data. The sequence composition-based tools also all had a relative 
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decrease in accuracy using this more relaxed dataset: Accuracy decreased 

between 4.5 and 6.6% for all methods, with the exception of Alien Hunter (the 

method with highest recall but lowest precision) which showed the smallest 

decrease of 0.6% (see Appendix File 3.5 and Appendix File 3.6). Using a second 

more relaxed dataset of parameters resulted in yet another decrease in predicted 

accuracy of the GI tools and the accuracy relative to the literature-based dataset 

also decreased further (data not shown). While the use of more relaxed criteria 

for GI prediction may still have its uses, the results indicate that the default 

settings of the IslandPick method are most appropriate for predicting islands that 

most closely resemble what is reported in the literature. In addition, the sequence 

composition-based methods appear to perform best when using the default 

IslandPick-predicted GI datasets for evaluation. 

3.5 Discussion 

I have used IslandPick, with its stringent default criteria, to generate test 

datasets of GIs and non-GI regions that are used to evaluate the accuracy of 

multiple sequence composition based GI predictors. This represents the first 

evaluation of GI predictors based on real (non-artificial) GI data from several 

different strains of bacteria (Azad and Lawrence, 2007; Vernikos and Parkhill, 

2006). By developing separate negative and positive datasets that were 

independent of sequence composition based approaches, I was able to assess 

the accuracy of several GI predictors.   

According to this analysis, SIGI-HMM has the highest precision and 

shares comparable overall accuracy with IslandPath-DIMOB, which has higher 
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recall at the expense of precision. SIGI-HMM is the only tool tested that 

measures codon usage and notably it also identifies codon usage associated 

with highly expressed genes and then discards such genes from the analysis. 

While more study is needed, this suggests that regions displaying codon usage 

bias of a pattern that is not associated with highly expressed genes are more 

likely to be GIs. Consistent with this, the IslandPath/DIMOB method that requires 

both a dinucleotide bias and the presence of a mobility gene for a GI prediction 

does much better than the IslandPath/DINUC method, which measures only 

dinucleotide bias. The latter can result in false positives from highly expressed 

genes but higher predictive recall/sensitivity. AlienHunter had the lowest 

precision (38%); however, it had by far the highest recall value (77%) with more 

than twice as many predictions as any other tool. 

Based on the results, the use of SIGI-HMM is suggested for making very 

precise predictions where a high confidence dataset of GIs is preferred while 

AlienHunter can be used as a first-pass tool to capture most GIs for further 

refinement. If suitable comparative genomes are available, IslandPick would be a 

top choice for GI prediction. If comparative genomes are not available, the results 

generally suggest that by combining multiple features of GIs, as in the 

IslandPath/DIMOB dataset, and accounting for highly expressed genes, which 

SIGI-HMM does and IslandPath/DIMOB does indirectly, a better overall predictor 

could be created. Considering that sequence composition based methods often 

make non-overlapping predictions, the use of more than one method may result 

in improved prediction accuracy. For example, I tested the accuracy of combining 
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the predictions from IslandPath-DIMOB and SIGI-HMM and found that there was 

a large increase in recall/sensitivity to 48% ( from IslandPath-DIMOB (36%); 

SIGI-HMM (33%)) and overall accuracy 88% (IslandPath-DIMOB (86%); SIGI-

HMM (86%)) while maintaining roughly the same precision/specificity 86% 

(IslandPath-DIMOB (86%); SIGI-HMM (92%)) (data not shown). More analysis of 

the differences in sequence composition between true positives and false 

positives in this analysis could be insightful.  

The results show that all GI predictors had a decrease in overall accuracy 

when trying to predict more ancient islands. Considering that sequence 

composition based predictors would have trouble detecting significant signals in 

older GIs due to amelioration to the host genome, it was not surprising that the 

overall accuracy for all tools decreased (Lawrence and Ochman, 1997). Alien 

Hunter had the lowest decrease in overall accuracy however, it still maintained 

the lowest precision and overall accuracy for the prediction of this dataset and 

SIGI-HMM still out performed the other sequence composition-based tools for 

predicting these more divergent islands. It is possible that the accuracy of some 

of these sequence composition-based tools could be improved by optimizing 

their parameters. However, out of all the tools, SIGI-HMM and Centroid were the 

only ones with a clearly defined sensitivity/statistical parameter and even for 

these there were no recommend suggestions besides the default. Although 

default parameters for all tools are presumably maximized to result in the best 

overall accuracy, some fine-tuning may improve their results.  
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It must also be appreciated that the GI regions identified with IslandPick 

represent a set of GIs that were acquired within a particular window of 

divergence of the strains being examined. Any genomic regions that did not have 

clear evidence of GI or non-GI status were not included in either of the datasets 

so that tools that predicted such possible/uncertain GIs were not penalized. This 

would include GIs that have inserted into multiple strains or those that have 

partial similarity with other genomic regions. Rather, my methodology penalizes 

tools that falsely predict GIs in highly conserved backbone regions that very likely 

do not contain true GIs, and my method penalizes tools that do not predict a 

subset of GIs that are very likely true positives. When compared to all of the 

sequence composition based methods tested in this study, IslandPick produced 

the smallest dataset of GIs compared to all of the methods (see Appendix File 

3.2) and the proportion of the genomes that are covered in both of the positive 

and negative datasets combined, ranges from 10%-30% per genome. Therefore, 

IslandPick does not make predictions for the majority (70%-90%) of the genome, 

reflecting the high accuracy of the positive and negative datasets. In addition, the 

comparative genomics-based GI datasets had the highest agreement with the 

smaller curated, literature-based dataset.  

This analysis of the accuracy of composition-based GI predictors should 

aid both development and use of such predictors, which are becoming of 

increasing importance as the critical role of GIs in microbial evolution becomes 

more apparent. My analyses of the accuracy of GI predictors should aid 

researchers in formulating an appropriate approach to identify GIs, based on 
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whether they prefer high recall/sensitivity or precision/specificity. Such GI 

predictors are likely to become of increasing importance in bacterial genome 

analysis, as appreciation grows of their significant role in adaptations of medical 

and environmental importance. 
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CHAPTER 4 ISLANDVIEWER: AN INTEGRATED 
INTERFACE FOR COMPUTATIONAL IDENTIFICATION 
AND VISUALIZATION OF GENOMIC ISLANDS 

Portions of this chapter have been previously published in the article 
“IslandViewer: an integrated interface for computational identification and 
visualization of genomic islands”, co-authored by M.G.I. Langille and F.S.L. 
Brinkman in Bioinformatics, Volume 25, Issue 5 ©2009 The Author(s) 

4.1 Introduction 

After developing IslandPick (Chapter 2) and conducting an analysis of the 

accuracy of several sequence composition based GI prediction methods 

(Chapter 3), I saw the need for a user friendly web resource that would integrate 

the most accurate GI prediction programs. In this chapter, I present IslandViewer 

(http://www.pathogenomics.sfu.ca/islandviewer/), the first web accessible 

interface that facilitates viewing and downloading of GI datasets predicted from 

user-submitted sequences, or based on pre-computed analyses, using the 

sequence composition based approaches SIGI-HMM and IslandPath-DIMOB, 

and the comparative genomics approach IslandPick. 

4.2 Implementation 

GI predictions are pre-computed using SIGI-HMM, IslandPath-DIMOB, 

and IslandPick (see section 4.3 below) for all completed genomes and are stored 

in a local MySQL database called MicrobeDB (see section 2.2 above). All 

methods are run in parallel for each genome so that automatic monthly updates 
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are quickly performed on a computer cluster, while all dynamic web pages are 

implemented using PHP. 

4.3 Selection and integration of genomic island prediction 
methods  

The inclusion of particular GI prediction methods into IslandViewer were 

based on several factors. The most obvious is that I could only consider using 

methods that had obtainable software and could be run without manual 

intervention. Therefore, many GI resources that are simply a database and have 

no downloadable software such as Islander (Mantri and Williams, 2004) could not 

be included into IslandViewer. In addition, I did not consider the inclusion of 

MobilomeFINDER (Ou, et al., 2007), a tool that uses a comparative genomics 

based approach similar to IslandPick because it requires the manual selection of 

comparison genomes (making pre-computed results for all genomes impossible). 

However, all of these methods are listed on IslandViewer’s “Resources” page 

and users are recommended to visit their respective websites if interested.  

For those tools that did have their software freely available, IslandPath-

DIMOB (Hsiao, et al., 2005) and SIGI-HMM (Waack, et al., 2006) were included 

because they were shown to have the highest specificity (86-92%) and overall 

accuracy (86%) (Chapter 3). In addition, the automated comparative genomics 

method, IslandPick, was included since it provides predictions that are not based 

on sequence composition and showed the most agreement with a manual 

curated dataset of literature based GIs. These three methods sometimes predict 

the same GIs, but often give slightly different results suggesting that they 
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complement each other well without being redundant. Methods that had lower 

specificity (some as low as 38% precision), which would result in a large number 

of false predictions in IslandViewer were avoided. Finally, none of the methods 

included in IslandViewer had been previously available as a web resource; 

therefore, giving new user-friendly access to three different GI prediction 

methods. 

4.4 Features and design of IslandViewer 

IslandViewer allows the viewing of all GI predictions for the above 

predictors through a single integrated interface (Figure 4.1). Predictions are pre-

computed for all published GIs and are updated on a monthly basis, while users 

with newly sequenced unpublished genomes can submit their genome for 

analysis and receive an email notification when finished. These user-submitted 

genomes are not viewable by other IslandViewer users and are accessible for at 

least one month. IslandPick automatically selects comparison genomes for use 

using default distance parameters, but since researchers may have particular 

insights into a particular species, they can choose to run IslandPick with their 

own manually selected comparison genomes and have the option of being 

notified by email when the results are available.
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Figure 4.1  A screenshot of the IslandViewer interface. 
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Once the genome of interest is selected it is presented as a circular 

genome image with each predicted GI highlighted (different colours for different 

tools in the IslandViewer) and is also available as a high-resolution image 

suitable for publication. In addition to the predicted GIs for each tool, 

IslandViewer highlights any GIs that have been predicted by two or more 

methods. The annotations for genes within each GI can be quickly viewed by 

hovering over the GI of interest within the image. Clicking on an island jumps to 

the corresponding row in a table below the genome image and gives information 

such as GI coordinates, links to tables showing genes and annotations within the 

GI region, links to external genome viewers at NCBI and Joint Genome Institute 

(JGI), and links to IslandPath to allow further examination of GI related features 

in the genome of choice. GI predictions may be downloaded in various formats 

including Excel, tab-delimited, comma-delimited, FASTA, and GenBank (allowing 

easy input into the genome browser and annotation tool Artemis (Rutherford, et 

al., 2000)).  All datasets and source code are available for download under a 

GNU GPL license. 

4.5 Discussion 

GI identification is becoming a first critical step in the characterization of a 

bacterial genome, due to the growing appreciation for the role of GIs in important 

adaptations of interest. Recent research has therefore focused on developing 

new computational methods for their prediction. However, these methods tend to 

use different approaches and identify different features of GIs. The result is that 

the most accurate methods each have high precision, but low recall, leading to 
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slightly different regions being predicted. Previously, researchers could either 

pick a single method or try to manually integrate the results from multiple 

methods themselves. In addition, many of these tools did not have their own web 

interfaces and often required that the user download and run the program on 

their computer. IslandViewer alleviates these concerns by providing a web 

interface for three accurate GI prediction methods that were not previously 

available through a web interface. By pre-computing GI datasets for all 

completed genomes and providing a single submission process for new user 

genomes IslandViewer allows researchers access to a user-friendly resource that 

can be used as the first step in GI analysis of bacterial genomes. It would be 

expected that researchers would manually inspect any GI predictions shown in 

IslandViewer to determine their validity and make more accurate predictions of 

their boundaries. IslandViewer helps aid further analysis of GI predictions by 

providing data in various formats that can be used in other bioinformatic tools 

such as Artemis, and by providing numerous links to other GI resources. 

IslandViewer should be a useful resource for any researcher studying GIs and 

microbial genomes. 
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CHAPTER 5 THE ROLE OF GENOMIC ISLANDS IN THE 
VIRULENT PSEUDOMONAS AERUGINOSA 
LIVERPOOL EPIDEMIC STRAIN 

Portions of this chapter have been previously published in the article “Newly 
introduced genomic prophage islands are critical determinants of in-vivo 
competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa”, 
co-authored by  C. Winstanley, M.G.I. Langille, J.L. Fothergill, I. Kukavica-Ibrulj, 
C. Paradis-Bleau, F. Sanschagrin, N. R. Thomson, G.L. Winsor, M.A. Quail, N. 
Lennard, A. Bignell, L. Clarke, K. Seeger, D. Saunders, D. Harris, J. Parkhill, R. 
E.W. Hancock, F.S.L. Brinkman, and R.C. Levesque in Genome Research, 
Volume 19, Issue 1  ©2009 by Cold Spring Harbor Laboratory Press 

5.1 Introduction 

Pseudomonas aeruginosa is a ubiquitous organism distributed widely in 

the environment, including the soil and water and in association with various 

living host organisms. It is one of the most prevalent causes of opportunistic 

infections in humans and is the most common cause of eventually fatal, 

persistent respiratory infections in cystic fibrosis (CF) patients.  It has been 

assumed to owe its versatility to its genetic complexity. Sequencing of four 

strains (Lee, et al., 2006; Mathee, et al., 2008; Stover, et al., 2000), and 

molecular genetic analysis of others, has revealed an approximately 6-7 Mb 

genome with around 5,500 ORFs. Based on comparisons of the first two P. 

aeruginosa genomes sequenced, those of strains PA01 (Stover, et al., 2000) and 

PA14 (Lee, et al., 2006) [the latter of which is the most common genotype 

encountered in diverse habitats in one study of 240 isolates (Wiehlmann, et al., 

2007)], it was revealed that there is a quite highly conserved core genome 
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representing up to 90% of the total genomic sequence; subsequent studies have 

revealed an extraordinary similarity of the core genome with an average 

nucleotide divergence of around 0.5% (1 in 200 nucleotides). Other changes that 

can occur include the loss of core genes through deletion or loss of expression 

through mutation [e.g. with the pyoverdine and O-antigen biosynthesis genes; 

(Spencer, et al., 2003)].  

In addition to this core genome, there are variable accessory genes, which 

are largely associated with GIs that are subject to what is termed diversifying 

selection, or rapid change that is presumed to be due to certain selective 

pressures. Some of these GIs have been well described including a 108-kb 

pathogenicity island PAPI-1 (Qiu, et al., 2006) that, in strain PA14, carries 

several regulatory genes, including pvrR that regulates antibiotic resistance and 

biofilm formation, a smaller (11-kb) PA14 pathogenicity island PAPI-2 encoding 

the exotoxin ExoU, a 14 gene island of PAK that encodes the flagellin 

glycosylation machinery (Arora, et al., 2001), two tandem defective phage 

(pyocin) islands in PA01 (but widely distributed) that are determinants of 

fluoroquinolone susceptibility (Brazas and Hancock, 2005), and a 103kb mobile 

GI pKLC102 from clone C isolates that appears to comprise a hybrid of plasmid 

and phage features (Klockgether, et al., 2004). While these specific instances 

have been studied and general features of the diversifying GIs are well 

understood, there is still considerable debate as to what are the forces that 

shape genomic diversity among P. aeruginosa isolates and in particular what 

selective advantages are provided by the variable accessory genes. The 
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discovery of epidemic strains from the lungs of patients with CF provided an 

unprecedented opportunity to address this issue. 

The widespread assumption that CF patients acquire only unique strains 

of P. aeruginosa from the environment was challenged when molecular typing 

was used to demonstrate the spread of a β-lactam-resistant isolate, now known 

as the Liverpool Epidemic Strain (LES), at a children’s CF unit in Liverpool, UK 

(Cheng, et al., 1996). Subsequent identification of other CF epidemic strains in 

the UK (Lewis, et al., 2005; Scott and Pitt, 2004) and Australia (Armstrong, et al., 

2003; O'Carroll, et al., 2004) indicate that transmissible P. aeruginosa strains 

make a significant contribution to the infection of patients in some CF centres. 

LES is the most frequent clone isolated from CF patients in England and Wales 

(Scott and Pitt, 2004) and has also been reported in Scotland (Edenborough, et 

al., 2004). In addition, LES can cause superinfection (McCallum, et al., 2001), 

exhibits enhanced survival on dry surfaces (Panagea, et al., 2005), and is 

associated with greater patient morbidity than other P. aeruginosa strains (Al-

Aloul, et al., 2004). In two unusual cases, transmission of an LES strain occurred 

from a CF patient to both non-CF parents, causing significant morbidity and 

infections that have persisted (McCallum, et al., 2002), and from a CF patient to 

a pet cat (Mohan, et al., 2008). LES isolates, including isolate LESB58, exhibit an 

unusual phenotype, characterised by early (in the growth curve) over-expression 

of the cell-density-dependent quorum sensing regulon, including virulence-

related secreted factors such as LasA, elastase and pyocyanin (Fothergill, et al., 

2007; Salunkhe, et al., 2005). Furthermore, LESB58 is known to be a biofilm 
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hyperproducer (Kukavica-Ibrulj, et al., 2008). Hence, LES is a successful and 

aggressive clone that is particularly well adapted to the CF lung. While all P. 

aeruginosa isolates are intrinsically resistant to antimicrobials, like other CF 

isolates that cause chronic infections and are treated over time with antibiotics, 

LES can readily mutate to resistance to the common antibiotics utilized in therapy 

(although LESB58 does not have a mutator phenotype like many other mature 

CF isolates, including other LES isolates). Indeed LES was first identified 

because of the widespread occurrence of P. aeruginosa isolates exhibiting 

ceftazidime resistance in a clinic where ceftazidime monotherapy was in routine 

use (Cheng, et al., 1996). A survey of multiple LES isolates demonstrated that 

the strain can also acquire resistance to meropenem, aztreonam, tobramycin and 

ciprofloxacin (Fothergill, et al., 2008).  

The P. aeruginosa strains PA01 and PA14 were previously compared with 

LES isolate LESB58 to assess in-vivo growth, infection kinetics, bacterial 

persistence and localization within tissues in a rat model of chronic lung infection 

(Kukavica-Ibrulj, et al., 2008). The three P. aeruginosa strains demonstrated 

similar growth curves in-vivo but differences in lung tissue distribution and in 

virulence in a competitive in-vivo assay. The LESB58 strain persisted in the 

agarose beads used to deliver bacteria into the bronchial lumen, while PA01 and 

PA14 strains were found to disseminate into the alveolar regions and grew as 

macrocolonies after 14 days post-infection.  

To learn about the forces that have shaped the development of this very 

important epidemic strain, a collaboration of researchers including myself, set out 
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to sequence and analyse the genome of the earliest archived LES isolate, 

LESB58. LESB58 was obtained from a Liverpool CF patient in 1988, eight years 

prior to the first published study on the LES (Cheng, et al., 1996). The LESB58 

genome was sequenced by the Pathogen Production team at the Sanger 

Institute and I led the genome annotation; including the identification of many 

large GIs including five prophage clusters, one defective (pyocin) prophage 

cluster and five non-phage islands. In addition, Roger Levesque’s research group 

performed an unbiased signature tagged mutagenesis (STM) study, and 

screening in a chronic rat lung infection model. I mapped these STM primer 

sequence reads to determine the genes implicated in the pathogenesis of LES.  

This study revealed genes from the prophage clusters that strongly impacted on 

competitiveness in this chronic infection model, indicating that acquisition of 

these prophage genes contributed to the success of the LES strain.  

5.2 Genome annotation 

I annotated the genome of LESB58, depicted in Figure 5.1 and with 

statistics available in Table 5.1, using a combination of automated methods and 

manual curation (see next paragraph). The genome is available through the 

Pseudomonas Genome Database at www.Pseudomonas.com, which represents 

a repository for all completed Pseudomonas genome sequences released 

publicly to date (Winsor, et al., 2009). 

Coding sequences (CDS) within LES were predicted using Glimmer3 

(Delcher, et al., 2007) and were assigned LES locus identifiers consisting of a 

“PLES_” prefix followed by five digits that are incremented in multiples of 10 to 
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allow for additional CDSs or non-coding RNAs. Orthologs in PA14 and PAO1 

were identified for each LES CDS or non-coding RNA using a reciprocal best 

BLAST approach coupled with synteny and Ortholuge (Fulton, et al., 2006) 

analysis: In particular, each LES CDS was used as the query input for a FASTA 

search with either PA14 or PAO1, using an identity cutoff of 30% that covered at 

least 80% of the query and hit. The relaxed 30% cutoff was used to capture 

possible cases of substantial gene divergence and the following methods were 

used to eliminate cases of non-orthologous homologs. If the original LES CDS 

was identified as the top hit using the same search as for the PA14 or PAO1 top 

hit, then the top hits were considered probable orthologs. In cases where multiple 

top hits with the same score were identified, gene synteny, from whole genome 

alignments obtained with the program Mauve (Darling, et al., 2004), was used to 

identify the most probable ortholog. Orthologs were additionally characterized 

using Ortholuge (Fulton, et al., 2006). LES genes with identified orthologs in 

either PAO1 or PA14, with the most recent annotations from 

www.Pseudomonas.com (Winsor, et al., 2009), were transferred automatically. 

Gene annotations from PAO1 were selected for transfer over PA14 in cases 

where LES genes had orthologs in both, due to the higher level of updated 

manual curation of the PAO1 genome. LES CDSs that did not have an identified 

ortholog in PA14 or PAO1 were manually annotated based on significant BLAST 

matches from the NCBI nr database. Protein subcellular localization and COGs 

were predicted for each LES CDS using PSORTb 2.0 (Gardy, et al., 2005) and 

RPS-BLAST (Marchler-Bauer, et al., 2002), respectively. 

http://www.pseudomonas.com/
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Table 5.1  P. aeruginosa LESB58 genome statistics 
Feature Characteristics 

Genome Size 6,601,757 base pairs 

Total Number of Genes 6027 

Protein Coding Genes 5931 

RNA Genes 96 

Pseudogenes 34 

Genomic Islands (genes) 5 (214) 

Prophage (genes) 6 (210) 

PALES genes with no 

orthologs ina: 

PAO1 574 

PA14 528 

PA7 825 

Any P. aeruginosa strains 350 
a Orthologs were determined using a combination of reciprocal best BLAST hits and gene 

synteny analysis, with some validation by Ortholuge. 

5.2.1 Virulence genes 

The LESB58 genome carries virtually all of the reported virulence genes of 

P. aeruginosa. Of the 265 P. aeruginosa virulence factor CDSs described for 

strain PA01 (Wolfgang, et al., 2003), all but two are present in the LESB58 

genome. Clearly orthologous CDSs to PA01 PA2399 (pvdD) and PA1392 were 

not present. PA2399 is a putative non-ribosomal peptide synthetase within the 

type I pyoverdine synthesis gene cluster. Instead, the LESB58 genome carries 

genes for the synthesis of a type III pyoverdine, which include a type-specific, 

divergent pvdD (Smith, et al., 2005). Notably, there are novel duplications of 

pyoverdine-associated genes in the genome of strain LESB58, which carries 

three identical copies of the fpvAIII gene (encoding the type III pyoverdine 

receptor) and the adjacent gene pvdE (encoding an ABC transporter).   Two 
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additional but truncated versions of pvdF are also present.  PA1392 is a 

hypothetical protein of unknown function. Some virulence-related LESB58 CDSs 

were divergent from strain PA01, including those matching PA1695 (pscP) and 

PA2525-7 (pilABC). The LES genome contains the type III secretion gene pscP, 

but with a ten residue deletion (5’-PTPTPTPTPT-3’; position 108-117) in the 

predicted protein in comparison to the strain PA01 predicted protein. Further 

analysis of virulence was performed in the signature tagged mutagenesis study 

described further below.  

5.2.2 Motility organelles 

Variations in the type IV pilin pil locus are not uncommon (Kus, et al., 

2004). The LESB58 genome contained PilB and PilC CDSs sharing 88% and 

84% identity with PAO1 orthologs respectively, but both matched P. aeruginosa 

strain 2192 orthologs with 99% identity. The LES putative PilA was identical to a 

previously reported unusual PilA (GenBank AAC63060; (Pasloske, et al., 1988)), 

but shared only 32% identity with the PA01 ortholog. Most important however in 

this regard were the experiments performed by Dr. Craig Winstanley’s research 

group that showed the parental strain and tested clonal derivatives were 

completely devoid of any form of motility, including flagellin-dependent swimming 

motility, pilus dependent twitching motility and viscosity-regulated swarming 

motility (Table 5.2). This is consistent with the observation that unlike strains 

PA01 and PA14, LES tends to remain tightly associated with the agar beads 

utilized in the rat chronic lung model (Kukavica-Ibrulj, et al., 2008). Dr. 

Winstanley’s research group also used electron microscopy to detect that neither 
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flagella nor pili were on the surface of LESB58, explaining the loss of motility. A 

whole P. aeruginosa PA14 genomic mutant library screen for deficiencies in 

swarming motility revealed that PA1628 mutants were less motile (E. Torfs and 

R.E.W. Hancock, unpublished data) and the equivalent gene in LESB58 was a 

pseudogene (PLES_36981/91; see Table 5.3 for a listing of all pseudogenes 

identified). Similarly other genes, that were adjacent to the homologs of other 

pseudogenes (PA2023, PA2026, PA2399, PA4688, PA5454, PA5655), led to 

loss of swarming motility when mutated in P. aeruginosa PA14. 

Table 5.2  Motility defect in LES isolates. 
Average zone diameters measured in militmeters (mm) from  
three replicates exhibiting about 5-15% standard deviation. Experiment 
performed by Dr. Winstanley’s research group. 

Strain Swimming Zone 
(mm) 

Twitching Zone 
(mm) 

Swarming Zone 
(mm) 

WT 23 50 29 

H1024 2 8 4 

H1025 4 8 4 

H1026 3 5 5 

H1027 7 15 4 

H1028 2 8 3 

H1029 3 5 6 

H1030 3 8 7 

H1031 2 3 7 

H1032 3 7 7 

H1033 8 11 8 
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5.2.3 Phenazine biosynthesis 

Phenazine compounds produced by fluorescent Pseudomonas species 

are metabolites that function in microbial competitiveness, and appear to play a 

role in virulence in P. aeruginosa. As with other P. aeruginosa genomes, the 

genome of LESB58 contained two clusters of genes encoding putative phenazine 

biosynthesis pathways. One cluster matched that of strain PA01 phzA2-phzG2 

(PA1899-1905) but contained a phzB gene sharing greater identity to PA01 

phzB1 (PA4211). The second cluster began with orthologs to the strain PA01 

phzA1-phzB1 (PA4210-4211) but the downstream genes shared greater identity 

with PA01 phzC2-phzG2.  

5.2.4 Lipopolysaccharide (LPS) 

The genome of LESB58 carries a cluster of LPS O-antigen serotype O6 

genes (Raymond, et al., 2002). O6 is a common serotype (Pirnay, et al., 2002) 

shared by the second most prevalent clone amongst the UK CF population, the 

Midlands 1 strain (Smart, et al., 2006). However as for many mature CF isolates 

(Hancock, et al., 1983), LES strains are non-typable and thus probably contain 

rough LPS lacking O-antigen. One likely reason for this is mutation to a 

pseudogene of the GDP-mannose 4,6-dehydratase gene (rmd, a homolog of 

PA5453), which is within the LPS biosynthesis gene cluster. It has been 

demonstrated that rmd knockout mutants are deficient in A-band LPS 

biosynthesis (Rocchetta, et al., 1998).  
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Table 5.3  Predicted pseudogenes in P. aeruginosa LESB58. 
Pseudo-
gene Start End PLES ID Product 

PAO1 
Locus ID 

Homolog 
accession 

 68630 68884 00541 
Conserved hypothetical 
protein PA0054 AAG03444 

 68957 69178 00551 
Conserved hypothetical 
protein PA0054 AAG03444 

 983975 984271 9011 Hypothetical protein PA4075  AAG07462 

 1064301 1064510 09841 Hypothetical protein PA3991 AAG07378 

wspE 1390018 1391562 12781 
Probable chemotaxis 
sensor/effector  PA3704 AAG07091 

wspF 1391589 1391954 12791 Probable methylesterase PA3703 AAG07090 

wspF 1391979 1392566 12801 Probable methylesterase PA3703 AAG07090 

 2542804 2543022 23691 Phage minor tail protein L  YP001347786 

 2549148 2551028 23761 Hypothetical protein PA0978 EAZ52070 

pltB 2757842 2763775 25821 Polyketide synthase type I  AAQ90173 

 2801226 2801822 26081 
4-hydroxyphenylpyruvate 
dioxygenase  EAV77455 

 2801863 2802039 26091 
Transcriptional regulator, 
asnc family  ABE46104 

 2802409 2802636 26111 Glutaredoxin  ABF54143 

 2814258 2815349 26201 
Outer membrane efflux 
protein  YP973578 

 2833295 2834071 26331 
Major facilitator 
superfamily MFS_1  YP001372980 

 2881389 2881904 26861 Tn3 family transposase  ABI20725 

mexF 3015431 3017683 28011 
RND multidrug efflux 
transporter  PA2494 AAG05882 

mexF 3017882 3018619 28021 
RND multidrug efflux 
transporter  PA2494 AAG05882 

mexT 3020021 3021151 28041 
Transcriptional regulator 
mext PA2492 AAG05880 

pvdF 3181636 3181848 29001 Pyoverdine synthetase F PA2396 AAG05784 

pvdF 3186857 3187069 29031 Pyoverdine synthetase F PA2396 AAG05784 

gor 3647780 3648310 32971 Glutathione reductase PA2025 AAG05413 

gor 3648307 3649134 32981 Glutathione reductase PA2025 AAG05413 

 3652654 3653145 33031 
Probable transcriptional 
regulator PA2020 AAG05408 
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Pseudo-
gene Start End PLES ID Product 

PAO1 
Locus ID 

Homolog 
accession 

 3977401 3977685 35801 Hypothetical protein PA1749 AAG05138 

 4095534 4096457 36981 
Prob. 3-hydroxyacyl-coA-
ehydrogenase PA1628  AAG05017 

 4096599 4097063 36991 
Prob. 3-hydroxyacyl-coa 
dehydrogenase PA1628  AAG05017 

 5050925 5051860 45951 
Still frameshift probable 
transcriptional regulator PA0748 AAG04137 

 5062180 5062368 46051 Hypothetical protein  ABJ09889 

 5541211 5542146 50241 Hypothetical protein PA4638 AAG08026 

hitA 5592840 5594360 50731 
Ferric iron-binding 
periplasmic protein PA4687 AAG08074 

 5708468 5709400 51711 
Probable short-chain 
dehydrogenase PA4786 AAG08172 

gmd 6479023 6479541 58481 
GDP-mannose 4,6-
dehydratase PA5453 AAG08838 

 6597036 6597260 59621 Hypothetical protein PA5566 AAG08951 

5.2.5 Antibiotic Resistance 

The original LESB58 isolate did not demonstrate remarkable antibiotic 

resistance, although like other P. aeruginosa isolates that infect the lungs of 

individuals with CF it is virtually impossible to eradicate once it becomes 

established (Hancock and Speert, 2000). In such cases, initial infections are 

suppressed by antibiotic treatment but over time antibiotics become increasingly 

less effective and resistance becomes established to one antibiotic after another. 

While many CF isolates acquire hyper mutator capabilities, e.g. by mutations in 

their mutT or mutS genes, LESB58 is not hypermutable, although subsequent 

isolates of this epidemic strain had acquired such status (Fothergill, et al., 2007). 

Nevertheless, the seeds for resistance development as observed in subsequent 

isolates are indeed present in the chromosome. The major cause of β-lactam 
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resistance is derepression of the class-C chromosomal β-lactamase (PA4110), 

and its homolog and those of all of the accessory regulatory genes are present in 

the genome. Another major cause of multidrug resistance is derepression of the 

expression of particular efflux pumps of which P. aeruginosa has a wide variety. 

Mutations in certain efflux pump genes were observed. For example the positive 

regulator of MexEFOprN, mexT (PA2492 homolog), was a pseudogene in 

LESB58, while the mexF (PA2494) gene is present but mutated suggesting that 

the MexEFOprN efflux system was minimally operative and perhaps not 

derepressible in the LES. Similarly, MexZ (PA2020) was also a pseudogene. 

However, the major efflux pump contributing to intrinsic and mutational 

resistance MexABOprM, and the ancillary system MexCDOprJ were intact. In 

other LES isolates exhibiting greater antimicrobial resistances, depression of 

AmpC and mutations in mexR and mexZ, implicated in up-regulation of the 

MexAB-OprM and MexXY efflux pumps respectively, have been identified 

(Salunkhe, et al., 2005). Of the 31 PAO1 CDSs annotated as functional class 

“antibiotic resistance and susceptibility” in the Pseudomonas Genome Database, 

only PA2818 (arr), a putative aminoglycoside response regulator, was absent 

from the genome of the LES.  
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Figure 5.1  Circular map of the P. aeruginosa LES genome.  
Starting from outermost circle going inwards: major (500kb) and minor tick 
(100kb) measurements of the genome with estimated location of the origin; 
prophage (orange) and GIs (green) are highlighted across all tracks; protein 
coding genes (blue) on plus (outer) and minus strand (inner); tRNAs (green), 
rRNAs (orange), and all other non-coding RNA genes (purple); Signature 
Tagged Mutants (black); GC content (outer black line plot) with GC content 
average (grey line) and GC skew (inner black line plot) were calculated using a 
10kb non-overlapping window. The location of two highly similar genomic 
regions of length 7.5 kb and 13.5 kb within the prophages are marked with 
looping purple lines, between their locations on the innermost circle. The 
identified prophage and GIs are distributed around the genome, but there is 
one notable cluster of LESGI-1, LESGI-2, and LESGI-3, reflecting the non-
random nature of GI insertion in P. aeruginosa (Wiehlmann, et al., 2007). 
Significant sequence composition bias in 7 of the 9 regions was 
computationally identified (Table 5.4), while GC content deviating from the 
average can be observed for these regions in the figure. 
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5.3 Identification of prophage and genomic islands within LES 

Prior to the sequencing of LESB58, previous studies used subtractive 

hybridization to identify several regions that were not present in PAO1 and 

further quantified the prevalence of these regions amongst LES and non-LES CF 

isolates (Smart, et al., 2006). I refined these novel regions further and identified 

several new GIs and prophage regions using IslandPick (see Chapter 2). The 

exact boundaries of several of these regions were determined by Craig 

Winstanley’s research group, by designing PCR primers reading out from each 

terminal region, and sequencing the resultant amplicons (Table 5.4).  

5.3.1 LES bacteriophage gene clusters  

Isolate LESB58 contained six prophage gene clusters, termed here 

prophages 1-6 (Table 5.4; Figure 5.2; Appendix File 5.1), of which four are 

absent from strain PA01. The LES prophage 1 gene cluster was a defective 

prophage predicted to encode pyocin R2. In strain PA01, two gene clusters in 

tandem encode pyocin R2 and F2, both of which are predicted to be evolved 

from phage tail genes. It has been demonstrated that either can be present or 

absent in P. aeruginosa (Ernst, et al., 2003; Nakayama, et al., 2000). The LES 

genome carried the pyocin R2 (P2 phage homolog) cluster (PLES06091-

PLES06271) but not the pyocin F2 (phage λ homolog) cluster. It also carried 

pyocin S2 (PLES41691).  
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Figure 5.2  Phage clusters identified in LESB58 with significant similarities and 
positioning of STM mutants after in-vivo screening. 
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The LES prophage 2 gene cluster is 42.1 kb long and includes 44 CDSs of 

which 32 are homologous to the sequenced bacteriophage F10 (Kwan, et al., 

2006), a member of the Siphoviridae family. Where orthologs were detected, 
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synteny was maintained between the two phage genomes, but matching regions 

were interspersed with non-matching CDSs (Appendix File 5.1).  

The LES prophage 3 gene cluster was 42.8 kb and included 53 CDSs. A 

13.6 kb region of this prophage, comprising 16 CDSs, shared 82.2% identity with 

a region of prophage 2 with homology to bacteriophage F10. Much of the rest of 

LES prophage 3 was similar to a region of the P. aeruginosa strain 2192 

genome. However, LES prophage 3 also contained a 7.5 kb region (11 CDSs) 

with 99.8% identity to a region of LES prophage 5. LES prophage 4 shared a 

high level of similarity with the transposable phage D3112 (Wang, et al., 2004) 

but with some variation, especially at one terminus. LES prophage 5 had 

considerable similarity to bacteriophage D3 (Kropinski, 2000), although there was 

evidence of substantial genetic rearrangements (Figure 5.2).  

The LES prophage 6 gene cluster was similar to the genome of 

bacteriophage Pf1 (Hill, et al., 1991). It has been suggested that Pf1 genes might 

be important in CF infections, in that Pf1 genes are up-regulated under 

conditions of reduced oxygen supply (Platt, et al., 2008), implicated in the 

augmentation of the antimicrobial efficacy of antibiotics (Hagens, et al., 2006), 

and play an active role in the activity and adaptation of P. aeruginosa populations 

biofilms (Mooij, et al., 2007; Sauer, et al., 2004; Webb, et al., 2004; Webb, et al., 

2003). However, since most clinical isolates carry Pf1-like phages, these 

activities are not restricted to successful CF strains such as the LES (Finnan, et 

al., 2004). 
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Table 5.4  Identified genomic islands and prophage regions. 

Region 
Name 

 
Integration 

Site 
Relative To 

PAO1 

Approximate start 
position Number 

of 
Genes 

Characteristics 

Starta Enda 
Sequence 

Composition 
Biasb 

Mobility Gene(s) 
Present 

Prophage1 PA0611 - 
PA0649  665561 680385 19 No None 

Prophage 2 PA4138 - 
PA4139  863875 906018 44 Yes Integrase 

Prophage 3 PA3663 - 
PA3664  1433756 1476547 53 Yes Integrase 

Prophage 4 PA3463 - 
PA3464  1684045 1720850 48 No Transposase 

LESGI-1 PA2727 - 
PA2737 2504700 2551100 31 Yes Transposases & 

Integrases 

Prophage 5 PA2603 - 
PA2604  2690450 2740350 65 Yes Integrase 

LESGI-2 PA2593 - 
PA2594 2751800 2783500 18 No None 

LESGI-3 PA2583 - 
PA2584 2796836 2907406 107 Yes Integrase 

LESGI-4 PA2217 - 
PA2229 3392800 3432228 32 Yes None 

Prophage 6 PA1191  - 
PA1192  4545190 4552788 12 Yes Integrase 

LESGI-5 PA0831 - 
PA0832 4931528 4960941 26 Yes Integrase 

a The approximate start and end positions are given for those regions without 

PCR analysis, except for Prophages 2 and 3 and LESGI-5. 
b Sequence composition bias is indicated if the majority of the region was found 

to have sequence bias by either Alien Hunter (Vernikos et al., 2006) or the 

IslandPick-DIMOB (Hsiao et al., 2005) method. 

5.3.2 LES genomic islands 

The observed five LESB58 GIs are summarized in Table 5.4, depicted in   

Figure 5.3, and described in greater detail in Appendix File 5.1. 
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Many GIs have been identified in P. aeruginosa strains in previous 

studies; including, PAGI-1 (Liang, et al., 2001), PAGI-2 and PAGI-3 (Larbig, et 

al., 2002), PAGI-4 (Klockgether, et al., 2004), PAGI-5 (Battle, et al., 2008), PAGI-

6 to PAGI-11(Battle, et al., 2009), PAPI-1 and PAPI-2 (He, et al., 2004), and 

pKLC102 (Klockgether, et al., 2004). Only two of the five GIs identified within the 

LES strain showed similarity to any previously identified P. aeruginosa island, 

with the last 67 kb of the 110 kb LESGI-3 island showing similarity to PAGI-2, 

PAGI-3, PAGI-5 and PAPI-1 (Figure 5.4), while LESGI-4 shared 46% identity 

with PAGI-1 over its entire length. As previously noted, pKLC102 and the related 

PAPI-1 were not found within the LES strain (Wurdemann and Tummler, 2007). 

In addition, PAGI-4 and PAGI-6 to PAGI-11 showed no significant homologs in 

the LESB58 genome. 

LESGI-1 is inserted at a tRNA locus, and contains phage- and 

transposon-related CDSs. However, it also contained several CDSs sharing 

similarity with predicted proteins from non-pseudomonads such as the 

thermophilic anaerobe Clostridium thermocellum and the marine bacteria 

Marinobacter sp. Although mostly matching hypothetical proteins of no known 

function, the island included homologs of regulatory proteins, restriction-

modification proteins, an ATPase and a sensor-kinase. This island included 

PALES23591, which contains the LES-F9 marker, although it is not unique to 

LES isolates (Smart, et al., 2006). 
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Figure 5.3  GIs identified in LESB58 with significant similarities and positioning of STM mutants after in-vivo screening. 
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Figure 5.4  Alignment of LESGI-3 and four other previously published GIs in P. aeruginosa.  
The similar regions are shown with sequence similarity for LESGI-3, PAGI-2 (AF440523), PAGI-3 (AF440524), PAGI-
5(EF611301) and PAPI-1 (AY273869) (Battle, et al., 2008; He, et al., 2004; Larbig, et al., 2002). Genes within each region are 
shown as black boxes. Alignment was created using Mauve (Darling, et al., 2004). 
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LESGI-2 contained a pyoluteorin biosynthesis gene cluster 

(pltMRLABCDEFGZHIJKNO) sharing 99% nucleotide sequence identity with a 

cluster from Pseudomonas sp. M18 (AY394844), but containing a frameshift 

mutation in pltB. Pyoluteorin has antifungal activities (Bender, et al., 1999) and 

may play an important role in the ability of plant associated pseudomonads, such 

as P. fluorescens, to suppress a variety of plant diseases (Nowak-Thompson, et 

al., 1999). Interestingly, in LESB58, as previously found in the genome of 

Pseudomonas sp. M18, the island was adjacent to a PA2593-like CDS. 

LESGI-3 was related to the PAGI-2 GI of Clone C (Klockgether, et al., 

2004; Larbig, et al., 2002) with an alternative cargo region containing multiple 

putative transport proteins. LESGI-4 was related to the GI PAGI-1 (Liang, et al., 

2001).  

LES GI-5 was a novel island containing genes that largely match those of 

organisms other than P. aeruginosa, and including a putative phage integrase 

and plasmid replication genes (Appendix File 5.1). Aside from those associated 

with mobile elements, most predicted protein BLASTP matches shared <50% 

identity.  

5.4 Signature tagged mutagenesis of LESB58 

Signature tagged mutagenesis (STM) is a well defined method for 

determining, in a relatively unbiased manner, the importance of specific genes in 

in-vivo growth, through the relative ability of mutants to survive in animal models 

of infection. Since LES is an extremely robust epidemic isolate in CF and since it 
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previously demonstrated a competitive advantage over other P. aeruginosa 

strains in relevant animal models of infection (Kukavica-Ibrulj, et al., 2008), a 

STM analysis was performed on LESB58 by Dr. Roger Levesque’s lab.  

Of the 60 LESB58 STM mutants that were attenuated in lung infection, I 

was able to map 47 of them to an unambiguous sequence location (Table 5.5). 

Six of these genes were also found in a previous STM screening using strain 

PA01 (Table 5.5). DNA sequencing revealed insertions in most known functional 

gene classes. These included insertions in genes encoding products or 

processes previously implicated in pathogenesis of P. aeruginosa, such as the 

type III secretion protein PscH, a haem iron uptake receptor PhuR, TolA, the 

fimbrial usher CupA3, the alginate biosynthesis protein MucD, and two 

transcriptional regulators PLES27111 and PLES33031. Insertions in genes 

involved in the biosynthesis of type III pyoverdine (pvdE) and pyochelin 

(PLES07011) were identified, emphasizing the importance of both siderophores. 
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Table 5.5  List of 47 LESB58 virulence associated genes.  
Identified by PCR-based screening of 9216 STM mutants after passage 
through the chronic rat lung agar bead infection model. 

STM 
Mutants 

Insertion 
Site in LES 

genome 
PAO1a 

ortholog Putative function / comments 
L103T13G PLES00271 PA0028 Hypothetical protein    
L28T5G PLES03211 PA0325 Putative permease of ABC transporter 
L70T18G PLES03331 PA0336 Nudix hydrolase YgdP 

L64T24G PLES03721 PA0375 
Cell division ABC transporter, permease 
protein FtsX   

L52T19T PLES04001 PA0402 PyrB Aspartate carbamoyltransferase 
L114T20G PLES06181 PA0622 Put. phage tail sheath protein/pyocin R2 

(LES prophage 1) 
L15T13G PLES07011 PA4226 Dihydroaeruginoic acid synthetase 

L124T1G PLES08021 None 
DNA replication protein DnaC (LES 
prophage 2) 

L114T14G PLES08731 PA4100 Probable dehydrogenase 
L6T19G PLES08751 PA4098 Probable short-chain dehydrogenase 

L113T14T PLES10401 PA3936 
Probable permease of ABC taurine 
transporter        

L124T11G PLES13181 PA3666 Tetrahydrodipicolinate succinylase 
L94T20G PLES13261 None Hypothetical protein (LES prophage 3)b 
L111T2G PLES19021 PA3166 Chorismate mutase 
L14T10G PLES22061 PA2858 Putative ABC transporter, permease protein 
L111T13T PLES22341 PA2831 Putative zinc carboxypeptidase     
L106T24G PLES23991 PA2705 Hypothetical protein 
L52T24G PLES23991 PA2705 Hypothetical protein 
L52T5T PLES23991 PA2705 Hypothetical protein 
L14T9G PLES24551 PA2650 Putative methyltransferase 
L58T23G PLES25621 None Putative lytic enzyme (LES prophage 5)c 

L19T13G PLES27111 PA2583 Probable sensor /response regulator hybrid 

L70T1G PLES29051 None 
PvdE; component of type III pyoverdine 
locus 

L113T14G PLES31971 PA2130 CupA3, fimbrial usher protein 

L110T9G PLES33001 PA2023 
UTP-glucose-1-phosphate 
uridylyltransferase  

L110T14G PLES33031 PA2020 Probable transcriptional regulator   
L13T13G PLES33821 PA1941 Hypothetical protein        
L124T10G PLES33821 PA1941 Hypothetical protein  
L82T13G PLES34271 PA1897 Putative desaturase 
L13T19G PLES36081 PA1721 Type III export protein PscH 
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STM 
Mutants 

Insertion 
Site in LES 

genome 
PAO1a 

ortholog Putative function / comments 

L109T23T PLES37591 PA1569 
Prob major facilitator superfamily (MFS) 
transporter 

L25T11T PLES39641 PA1449 Flagellar biosynthetic protein FlhBd 

L106T19G PLES41401 PA1181 Conserved hypothetical protein 

L54T20T PLES41751 PA1144 
Probable major facilitator superfamily (MFS) 
transporter 

L54T13T PLES43701 PA0945 
PurM, phosphoribosylaminoimidazole 
synthetase 

L57T4G PLES45041 None Hypothetical protein (LES GI-5) 
L65T15G PLES45141 PA0829 Probable hydrolase 

L19T14G PLES45311 PA0811 
Probable major facilitator superfamily (MFS) 
transporter 

L22T17G PLES45771 PA0766 Serine protease MucD precursor 
L121T13G PLES46381 PA0692 Hypothetical protein    
L64T1G PLES46641 PA4284 Exodeoxyribonuclease V beta chain 
L10T7G PLES47381 PA4360 Putative chromosome segregation ATPase 

L14T13G PLES50951 PA4710 
Putative haem uptake outer membrane 
receptor PhuR  

L20T20G PLES53911 PA5002 Hypothetical protein    
L21T13G PLES55011 PA5111 Lactoylglutathijne lyase 
L61T13G PLES56651 PA5271 Hypothetical protein 

L127T13G PLES57621 PA5367 
ABC phosphate transporter membrane 
component  

aGenes previously identified by STM screening of P. aeruginosa strain PAO1 (or present in the 
same operon as previously identified genes) are indicated in bold.  
bThis location was tentatively identified as it is within a duplicated region shared by LES prophage 
5 
cSince it is likely that gene PLES25621 would not be expressed in a lysogen, it seems probable 
that the insertion in gene PLES25621 had a polar effect on downstream genes, affecting the 
expression of PLES25631, PLES26641and PLES25651, which are known to be part of LES 
prophage 5. 
dSince the parent strain LES5B is relatively deficient in swimming motility which depends of 
flagella function (Table 5.2), it is hypothesized that the observation of this mutation within the 
characterized STM mutants reflects either an importance for the residual motility function, an 
alternative function for FlhB (e.g. in a Type III-like secretion event or adherence) or polar effects 
on one of the downstream genes. 
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5.4.1 In-vivo analysis of STM mutants having insertions in prophage and 
genomic islands 

To assist in understanding the basis for the successful colonization of the 

LES in CF patients, the level of attenuation in-vivo was determined by Dr. 

Levesque’s research group for 3 STM mutants having insertions in LES 

prophages -2, -3 and -5 and one STM mutant in the unique LES GI, LESGI-5 

(Table 5.4). In-vitro growth was assessed for each of these STM mutants in 

mixed cultures with the wild-type (in-vitro competitive index [CI]) to confirm that 

these mutants did not affect in-vitro growth, and were not out-competed in-vitro 

by the wild-type LESB58 strain, yielding an in-vitro competitive index of around 

1.0 after 18 hr in BHI broth. This contrasted with the results when competition 

was assessed in-vivo, for which the mutants were mixed with the wild-type strain 

LESB58 and grown in the rat lung infection model for 7 days. As depicted in 

Figure 5.5, mutants with insertions in both Prophages 2 and 5 caused a severe 

defect in growth and maintenance in-vivo which gave a significant 16- to 58- fold 

decrease of CFUs in rat lung tissues with competitive index values of 0.061 and 

0.017, respectively. Mutants in Prophage 3 and LESGI-5 could be partially 

maintained in lung tissues with approximately 7-fold decreases in growth in-vivo.  
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Figure 5.5  In-vivo competitive index (CI) of four STMs within P. aeruginosa LESB58.  
STM PALES_45041 (within LESGI-5), PALES_25621 (within LES Prophage 5), 
PALES_13261 (within LES Prophage 3), and PALES_08021 (within LES 
Prophage 2) grown for 7 days in the rat lung in competition with the wild-type 
LESB58 strain.  Each circle represents the CI for a single animal in each 
group. A CI of less than 1 indicates an attenuation of virulence. The geometric 
mean of the CIs for all rats is shown as a solid line and statistically significant 
p value is indicated with an asterisk (* P < 0.001 with the Mann-Whitney sum 
test). This experiment was performed by Dr. Levesque’s research group. 

 

5.5 Conclusions 

The genome of P. aeruginosa exhibits a mosaic structure (Ernst, et al., 

2003) and is composed of a “core genome” (approximately 90%) and an 

“accessory genome” (approximately 10%). The latter includes gene clusters 

involved in determining O-serotype (Raymond, et al., 2002), flagellin type (Arora, 
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et al., 2001), type IV pili (Kus, et al., 2004), siderophore production (Spencer, et 

al., 2003) as well as genomic/pathogenicity islands (Gal-Mor and Finlay, 2006; 

He, et al., 2004; Klockgether, et al., 2004; Larbig, et al., 2002; Liang, et al., 2001) 

and prophages. Although many of the known virulence genes are carried within 

the core genome of P. aeruginosa (Wolfgang, et al., 2003), genes from the 

accessory genome can contribute to pathogenicity. The genome of LESB58, like 

those sequenced previously, carries the core genome, including the vast majority 

of recognized virulence genes of P. aeruginosa. The genomic variations lie 

largely within five prophages and one defective prophage, and five large GIs, a 

few of which are related to those found in other strains of P. aeruginosa. 

Extensive genome plasticity has been reported for P. aeruginosa clinical 

isolates, with phage sequences making a significant contribution to HGT leading 

to sequence diversity (Shen, et al., 2006). Indeed, it has been suggested that 

integrase-driven instability plays an important role in bacterial genomic evolution 

(Manson and Gilmore, 2006). Furthermore it has been demonstrated that phages 

can drive diversification of P. aeruginosa (Brockhurst, et al., 2005). More than 60 

temperate phages have been isolated from P. aeruginosa (Akhverdian, et al., 

1984; Wang, et al., 2004), and many have been genome sequenced.  

It is well known that P. aeruginosa pathogenesis involves a variety of well 

known core genome functions (e.g. Type II and III secretion, iron transport, etc) 

and as well as other functionally important “accessory” gene clusters determining 

O-serotype, flagellin type, type IV pili and siderophore production [although these 

are only named accessory genes because of their sequence divergence and it is 
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arguable that these are really core functions]. This chapter has shown for one of 

the few well characterized “epidemic” strains of P. aeruginosa that the success of 

this organism, permitting it to be retained in a infection model relevant to CF, 

requires genetic information encoded on three prophages and one GI. This 

sheds some light on the crucial nature of the flow of genetic information through 

the accessory genome in such critical functions as the ability of an organism to 

grow successfully in a host possessing multiple mechanisms for impeding 

bacterial survival.  

It has been demonstrated that P. aeruginosa virulence is combinatorial 

(Lee, et al., 2006). The studies described here indicate an ability to successfully 

establish colonization in what is usually a protected niche, the lung, indicate that 

this too involves a combinatorial process and involves both the core genome and 

key prophage and GI genes from the “accessory” genome to increase 

competitiveness.  
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CHAPTER 6 CRISPRS AND THEIR ASSOCIATION WITH 
GENOMIC ISLANDS 

6.1 Introduction 

Clustered, regularly interspaced short palindromic repeats (CRISPRs) are 

genetic elements that have been identified in approximately 40% and 90% of 

Bacteria and Archaea genomes, respectively (Grissa, et al., 2007). A CRISPR 

consists of several identical repeats, separated by non-identical spacer 

sequences (Figure 6.1)(Sorek, et al., 2008). These repeat and spacer sequences 

typically range in size from 25-40 bps long, while the number of repeats in a 

single CRISPR varies widely from 2 to 250 (Grissa, et al., 2007).   

Initially, CRISPRs were thought to be simple repetitive elements with no 

known function; however, recent research has shown that these elements along 

with CRISPR associated (CAS) genes are involved in a silencing mechanism that 

can provide protection against phage (Barrangou, et al., 2007). In this study, the 

authors showed that phage-resistant Streptococcus thermophilus could be 

produced when infected with phage. These phage resistant mutants were shown 

to have newly acquired spacer sequences that matched with 100% identity to the 

genome of the challenging phage. Barrangou, et al. verified that these spacer 

sequences were the cause of the newly acquired phage resistance by 

introducing these phage related spacer sequences into a phage-sensitive S. 

thermophilus and showing gain of phage-resistance. Several studies have shown 
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that the CRISPR region is expressed as a single RNA molecule that is then 

processed into small RNAs (sRNAs) (Tang, et al., 2002; Tang, et al., 2005). The 

CRISPR system was initially thought to target mRNAs and be analogous to the 

well described RNAi system in eukaryotes (Hannon, 2002), but a recent study 

showed that the CRISPR system targeted DNA and could block HGT of a 

plasmid by conjugation (Marraffini and Sontheimer, 2008).  

Previous studies that have analysed the phylogenetic profiles of CAS 

genes suggest that CRISPR systems could be primarily transferred by HGT 

(Godde and Bickerton, 2006; Haft, et al., 2005). Although CRISPRs have been 

identified on 10 megaplasmids (Godde and Bickerton, 2006) and within two 

prophage in Clostridium difficile (Sebaihia, et al., 2006), a large scale analysis of 

CRISPRs and GIs has not been conducted.  

Figure 6.1  Typical structure of a CRISPR system. 

 

6.2 Over representation of CRISPRs within GIs 

Predicted CRISPRs were obtained from the CRISPRdb (http://crispr.u-

psud.fr/crispr/CRISPRHomePage.php). The entire database of CRISPRs was not 

available through the web interface, so the complete list was sent by email from 
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Ibtissem Grissa on October 29th, 2008. This database contained 1043 confirmed 

CRISPRs for 355 species (306 Bacteria and 49 Archaea). The coordinates of 

these CRISPRs were searched among the 5172 GIs in these 255 species that 

had been predicted by any of the GI prediction methods: IslandPick, SIGI-HMM, 

or IslandPath-DIMOB. In total, 128 CRISPRs in 76 organisms were found to be 

within these GIs and based on the proportion of sequence within GIs was twice 

as many as expected (see Table 6.1 and Appendix File 6.1). This over-

representation of CRISPRs within GIs was found to be statistically significant (p 

value = 1.6x 10-16) using a chi-squared test.  

Considering that CRISPRs have been identified in a larger proportion of 

Archaea genomes versus Bacteria genomes, the over-representation of 

CRISPRs in GIs was tested separately on Archaea and Bacteria datasets. While 

the Bacteria dataset still showed a significant over-representation of CRISPRs (p 

= 8.1x10-18), the Archaea dataset was not statistically significant (p = 0.02) even 

though a similar trend was observed. This lack of CRISPR over-representation in 

GIs in Archaea could have biological significance in terms of Archaea obtaining 

CRISPRs through MGEs other than GIs. However, it is possible that it could be 

simply the result of not having enough sequenced Archaea genomes and that 

Archaea has less GIs (3.4% of genomes) than Bacteria (6.4% of genomes); 

therefore, limiting the statistical strength of the association calculation. 
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Table 6.1  Over-representation of CRISPRs in GIs. 
Domain 
of Life 

Number 
of 
Genomes 

Number of GIs Proportion of 
Genome in 
GIs 

Total 
Number of 
CRISPRs 

Expected 
Number of 
CRISPRs in 
GIs 

Observed 
Number of 
CRISPRs in 
GIs 

Significance 
(Chi-square 
Test)* 

Archaea 49 298 3.7% 206 7.7 14 0.020 

Bacteria 306 4874 6.4% 837 53.3 114 8.1x 10-18 

Archaea 
and 
Bacteria 

355 5172 6.1% 1043 64.0 128 1.6x 10-16 

*x2 test includes number of observed and expected CRISPRs outside of islands (data not shown). 
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6.3 GIs and CRISPRs have more phage genes 

To approximate the contribution of phage to all GIs, the frequency of 

genes in GIs with ‘phage’ occurring in the annotation (referred to as ‘phage 

genes’ from now on) was enumerated and compared to the number of phage 

genes outside of GIs.  As expected, GIs disproportionately contained a large 

number of genes with a phage annotation (6990 observed; 1264.2 expected; p 

=~0), indicating that a large number of GIs are likely prophage regions (Table 

6.2). This over-representation of phage genes is seen in both Archaea (p= 4.5 x 

10-20) and Bacteria (p=~0). However, the proportion of GIs that contain at least 

one phage gene is much less in Archaea (18/355 =5.1%) compared to Bacteria 

(2095/11875=17.6%), which is representive of the smaller proportion of phage 

genes in general seen within Archaea (0.10%) versus Bacteria (0.79%). 

 GIs that contained CRISPRs showed the same over-representation of 

phage genes (p= 5.7 x10-5, Table 6.2) when compared to genomic regions 

outside of GIs. The number of phage genes within GIs with CRISPRs was not 

significantly different when compared to the number of phage genes within GIs 

not containing CRISPRs (p=0.54, Table 6.2). A comparison between Archaea 

and Bacteria GIs containing CRISPRs and phage genes could not be conducted 

due to the small sample sizes for these categories. 
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Table 6.2  Over-representation of genes with ‘phage’ annotation in CRISPRs and GIs. 

Genomic Regions 
Number of ‘phage 

genes’ 
Total 

number 
of genes 
in region 

Chi-
square 

test 
(x2) Observed Expected3 

Inside GIs1 6990 1264.22 165784 ~0 

Outside GIs1 12868 18593.78 2438303 

GIs containing CRISPR(s)2 13 4.5 1500 5.7 x 
10-5 

Outside GIs2 812 820.5 274073 

GIs containing CRISPR(s)2 13 22.9 1500 0.54 

GIs not containing CRISPR(s)2 267 257.1 16825 
1Total of 12230 GIs in 853 organisms 
2Total of 5172 GIs in 355 organisms 
3Expected = Total number of genes in region * Observed number of phage genes 
in both regions / Total number of genes in both regions 
 

6.4 Conclusions 

In this chapter, I have provided supporting evidence that CRISPRs are 

over-represented within GIs and therefore are likely being horizontally 

transferred. In addition, it has been shown that some of these GIs containing 

CRISPRs are likely to be prophage hinting that some phage are carrying these 

CRISPRs within their genome. Typically, it has been thought that CRISPRs are 

mainly beneficial to bacteria to defend against viral infections. However, it could 

be that some phage have started to take advantage of this system to possibly 

eliminate competing phage strains. In addition, I have identified differences 

between Archaea and Bacteria with respect to prophage, GIs, and CRISPRs. 

Upon reflection of the data it appears that Archaea have less phage genes within 

their genomes resulting in a lower proportion of GIs containing phage genes, and 
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presumably causing a lower proportion of GIs in Archaea when compared to 

Bacteria. This lack of phage genes in Archaea could be because approximately 

90% of all Archaea genomes contain CRISPRs and provide a stronger defense 

against phage. Of course, most of this data is speculative, but it does provide 

some initial findings suggesting that the CRISPR system is widely spread and 

has broad functionality. Understanding the association of CRISPRs with islands 

is important, given the association of GIs with virulence and other microbial 

adaptations of medical and industrial importance. 
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CHAPTER 7 CONCLUDING REMARKS 

When I started this project in 2005, the genome sequencing era was well 

under way with approximately 200 completely sequenced microbial genomes and 

rumours of the next generation sequencing machines that could sequence a 

microbial genome in an afternoon were just starting to surface. Researchers 

were quickly realizing that analyzing the genes from a single organism without 

reference to previously published genomes had limited conclusions. 

“Comparative genomics” was the new field that allowed comparisons between 

several related species (often with varying phenotypes) and provided insight into 

possible function of those new or missing genes. Now in 2009, the number of 

completed genomes will likely pass the 1000 mark and in coming years will 

continue to grow rapidly. Any genomics project today would not be considered 

without a large comparative genomics component. During this time span, I 

designed a computational method to identify GIs using a comparative genomics 

approach. Initially, I used this approach to identify GIs in a few classical 

organisms that had several closely related sequenced genomes (e.g. 

Escherichia, Salmonella, and Pseudomonas), but realized that selecting 

comparison genomes for all genomes would be increasingly time consuming as 

more genomes were sequenced. Therefore, I set out to develop a method that 

would automatically select comparison genomes in a relatively unbiased fashion 

and allow GI prediction without manual intervention. Although this sub-project 
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was challenging and had never been tackled previously, the outcome resulted in 

IslandPick, a GI prediction program that would become more useful as genome 

sequencing continued instead of becoming obsolete.  

IslandPick, along with stringent parameters, was used to generate a 

robust dataset of GIs and with some slight adaptations, a dataset of conserved 

regions that were considered non-GIs. Considering that these datasets were 

derived from a non-sequence composition based method and had high 

agreement with a smaller dataset of previously published GIs, they were used to 

compare the accuracy of several previously published GI prediction programs. 

This was a much needed analysis that showed sequence based GI prediction 

programs had varying strengths and weaknesses with respect to precision, 

recall, and overall accuracy. Overall, two methods, SIGI-HMM and IslandPath-

DIMOB, had the highest precision and accuracy.  

Considering that these two methods (SIGI-HMM and IslandPath-DIMOB) 

were not available through a web interface, I decided to integrate them along with 

IslandPick into a new web-based GI prediction resource called IslandViewer. 

This is the first web resource that integrates multiple GI prediction methods 

applied to all sequenced genomes, in an automated, continually updated fashion, 

and allows users to submit their own newly sequenced genomes for analysis. 

This research has improved access to predictions of GIs, and evaluation of 

predictive methods, which should benefit a broad range of researchers interested 

in GIs, prokaryotic evolution, and comparative genomics. 
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I was then able to apply my GI prediction research in two different ways. 

First, I used the GI prediction programs to help identify GIs and prophage regions 

within the newly sequenced P. aeruginosa Liverpool Epidemic Strain, which had 

been shown previously to have increased pathogenicity in CF patients. Several 

genes within these variable regions were revealed to provide a competitive 

advantage over mutant strains in an in-vivo rat lung infection model; confirming 

the role of these GIs in bacteria pathogenicity. Second, the thousands of 

predicted GIs in IslandViewer were able to provide evidence that CRISPRs are 

over-represented within GIs and are often associated with prophage regions. 

This large-scale association could not have been conducted without the GI 

datasets from hundreds of organisms, and provides possible insight into global 

mechanisms of bacterial evolution that should be further studied.  

Future study of GIs depends on robust computational methods that can 

help identify these regions accurately. My research has provided a major step 

forward in this direction, providing our first understanding of the accuracy of GI 

predictors, and providing tools that will facilitate more in depth analysis of GIs. 

There is still much we do not understand, but clearly GIs need to be studied 

further, given their apparent important role in prokaryotic evolution and medically 

important adaptations in pathogens.  
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APPENDIX 

The CD-ROM attached forms a part of this work. 

Spreadsheet files (.xls) can be opened with Microsoft Excel or Open Office, while other 

documents (.pdf) can be opened with any PDF reader. 
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